
Advanced SCSI Programming Interface
Frequently Asked Questions

ASPI for Microsoft 

Windows  95 and Windows NT 

July 1, 1998

ü

Copyright
Copyright © 1998 Adaptec, Inc. All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written consent of Adaptec, Inc., 691South Milpitas Blvd.,
Milpitas, CA 95035.

Trademarks
Adaptec, the Adaptec logo, and AHA are trademarks of Adaptec, Inc. which may be registered in some
jurisdictions.

All other trademarks are owned by their respective owners.

Changes
The material in this document is for information only and is subject to change without notice. While
reasonable efforts have been made in the preparation of this document to assure its accuracy, Adaptec, Inc.
assumes no liability resulting from errors or omissions in this document, or from the use of the information
contained herein.

Adaptec reserves the right to make changes in the product design without reservation and without
notification to its users.

General Administrative Questions

Q: What is ASPI for Windows 95 and Windows NT?

A: The Advanced SCSI Programming Interface (ASPI) for Windows 95 and Windows NT allows a variety
of different applications, DLLs, or drivers to send commands to SCSI devices. ASPI is supported on a
number of different operating systems including DOS, Windows 95, and Windows NT. There are also
a number of different application programming interfaces (APIs) including ASPI for DOS, ASPI for
Win16, and ASPI for Win32.

This document focuses on frequently asked questions about ASPI for Windows 95 and Windows NT,
regardless of the API. Specifically, ASPI for Windows 95 supports the ASPI for DOS, ASPI for
Win16, and ASPI for Win32 APIs, while Windows NT supports the ASPI for Win16 and ASPI for
Win32 APIs. There is also a version of ASPI for Win32 for the Alpha under Windows NT, but it is not
specifically covered by this document.

Unless otherwise noted in this document, the term ASPI shall mean ASPI for Windows 95 and
Windows NT.

Q: What is the most current version of ASPI?

A: As of the date on this document, the most current ASPI for Windows 95 and Windows NT is version
4.57, build 1008. The latest version of ASPI (not suitable for redistribution) can be downloaded from
http://www.adaptec.com/support/files/upgrades.html#aspi, and the filename is ASPI32.EXE. Also
available from this site is a small utility named ASPICHK.EXE that lists all the version numbers for the
ASPI layer on a particular machine.

Q: Where can I get the latest ASPI specification and sample disk?

A: The latest information on ASPI for DOS, Win16, and Win32 is contained in the ASPI Software
Development Kit. This SDK is available for download free of charge from the Adaptec web site
(http://www.adaptec.com). Simply search for and download the ASPISDK.EXE file.

Q: Where can I get the latest SCSI specifications?

A: Neither the ASPI SDK nor the specifications include a tutorial on SCSI programming. They assume a
solid knowledge of the SCSI specification, along with detailed knowledge of the device you are
attempting to program. Here are sources for the latest SCSI specifications:

 SCSI-1 and CCS: American National Standards Institute
 11 West 42nd Street,
 NY, NY 10036
 Phone: (212) 642-4900
 Fax: (212) 302-1286

 SCSI-2: Global Engineering Documents
7730 Carondelet Ave, Ste 407
Clayton, MO 63105
Phone: (800) 854-7179
Phone: (314) 726-0444
Fax: (314) 726-6418

In addition, it is highly recommended that you acquire the technical reference manuals for any SCSI
hardware which your ASPI module intends to support. These manuals can be obtained from the

hardware manufacturer, and they provide detailed information on which SCSI commands are supported
and how they are implemented.

Q: How does my company license ASPI for redistribution?

A: Although ASPI is delivered with Windows 95, it is not delivered with Windows NT. Furthermore, the
version delivered with Windows 95 is older and does not have all of the latest features. If you want the
latest version of ASPI to be delivered with your application for either Windows 95 or Windows NT,
then you must license ASPI for redistribution from Adaptec.

Licensing ASPI is fairly easy, and assuming you qualify, it is free. First, you should contact Diane
McGee in the Adaptec Legal Department. She can be reached via e-mail at
mailto:dmcgee@corp.adaptec.com, and she will ask you to fill out an ASPI Distribution License
Request form. The form requests your company name, complete address, phone, fax, name of contract
representative, and a brief description of your development project. The form is either mailed or faxed
to Diane for processing.

Following receipt of the form, it will take approximately 5 business days for approval, followed by up
to 10 business days for the generation of the contracts and internal paperwork. Basically, you should
plan on requesting the license roughly four to eight weeks before your project is to be completed.

Once licensed you will receive a single floppy which contains the ASPI installer for both Intel and
Alpha (which must be used—it is no longer optional), the documentation for the installer, the latest
ASPI for Win32 documentation, and the latest ASPI for Win32 sample. All of the documentation is
distributed electronically as Adobe Acrobat files.

Please be aware that the ASPI layer is copyright Adaptec and should not be put on any on-line forums
for free download. If your customers ever need an interim release of ASPI which you are not licensed
to distribute, then you may direct them to the Adaptec web site to download the latest ASPI layer.

Q: How do I get technical support for ASPI development issues?

A: Adaptec does not provide programming support for the ASPI layer. It is assumed that you are already
familiar with the device you wish to control (e.g. CD-ROM driver, scanner, etc.). The sample source
code provided in the SDK (available at http://www.adaptec.com) will get you started in your
development. If you believe you have found a bug in the ASPI layer, please be sure you are using the
latest ASPI layer from http://www.adaptec.com. If the problem persists, please send detailed
information, with the steps to replicate the bug, to mailto:acap@corp.adaptec.com.

General Development Questions

Q: Which application programming interfaces does ASPI support?

A: ASPI for Windows 95 supports ASPI for DOS, ASPI for Win16, and ASPI for Win32.
ASPI for Windows NT (Intel) supports ASPI for Win16, and ASPI for Win32.
ASPI for Windows NT (Alpha) supports ASPI for Win32 only.

Q: Which SCSI features does ASPI support?

A: ASPI supports a fairly straightforward subset of the SCSI-2 protocol. In general, it is easier to state
what ASPI does not support: tagged command queuing, linking, message phase control,
disconnect/reconnect control, narrow/wide negotiation, synchronous negotiation. ASPI does support
synchronous, wide, and disconnected transfers, it just does not allow you to control the setup of these
SCSI features. Under Windows 95 and Windows NT, if the target, host adapter, BIOS, miniport, and
user options agree, then ASPI will support the different features.

As an example of this, assume there is a SCSI target that supports synchronous transfers, but after
checking your commands with a bus analyzer, you know that they are not being used. ASPI is not
responsible for this behavior. Assuming the host adapter supports it, synchronous negotiation has either
been turned off in the adapter BIOS, by the SCSIPORT because of an error, or even by the user through
the Device Manager. Again, ASPI is not responsible, and you will not receive ASPI technical support
for such an issue.

Q: Do I have to use data transfer flags in my SRBs?

A: Yes. The older real mode drivers under MSDOS would allow the use of SRB_DIR_SCSI to indicate
that the direction of transfer is unknown. This flag still exists, but under Windows 95 and Windows NT
it can cause strange behavior on certain miniport drivers (usually PIO based). For this reason it is
extremely important that either SRB_DIR_IN or SRB_DIR_OUT be used on every command which
transfers data. If there is no data transfer, do not use any data direction flags at all. The use of data
direction flags is true under all API implementations for Windows 95 and Windows NT.

Q: How do I properly wait for SRB completion?

A: The proper way to wait for SRB completion depends on the completion method. For polling, simply
check the SRB_Status code periodically for a value other than SS_PENDING. Once the value changes,
the SRB is complete, and the SRB and data memories are safe for reuse or disposal.

For posted requests in ASPI for Win16 first check the return code from SendASPI32Command for
SS_PENDING. Do not check the SRB_Status code. If you have a pending return code, then you know
that at some point in the future your callback routine will be called with the completed routine, at which
point it is safe to check status codes, reuse the SRB, etc. For ASPI for Win32 you will always receive a
callback to your post routine regardless of how the SRB completes. In other words, if you have an
immediate completion in ASPI for Win16 then the return code will be other than SS_PENDING and
there will be no callback. In ASPI for Win32 the return code will be other than SS_PENDING and
there will be a callback for that SRB.

Finally, for event notification in ASPI for Win32, you should first check the return code from
SendASPI32Command for SS_PENDING. Do not check the SRB_Status code. If you have a pending
return code, then you should do a WaitFor* Win32 API call on the handle of your event. When the
event is signalled, it is then safe to check the SRB_Status field, reuse the SRB, etc. Do not check the
status codes or reuse the SRB until after the event has been signalled. Remember to make sure that the
event is a manual reset event (CreateEvent(NULL, TRUE, FALSE, NULL)), and that it has been reset

to a not-signalled state before you call ASPI. All of these rules are fully documented in the latest ASPI
for Win32 specification available in the ASPI Software Development Kit at http://www.adaptec.com.

Q: How do I properly check status codes?

A: Once you have properly waited for completion of your SRB, you should check the SRB_Status field for
SS_COMP. If you receive an SS_COMP then the SRB has completed successfully and you should not
look at any of the other status codes (host adapter and target status). They may not be zero, but they do
not mean anything significant unless you have received a result other than SS_COMP.

Q: Why can’t I transfer more than 64KB at a time?

A: Because you have a bus-mastering SCSI host adapter, and there is a limit of 17 scatter/gather elements
on your system. Again, understand that a polled I/O (PIO) adapter will not exhibit these limitations.

To understand the problem and the possible solutions, you must understand scatter/gather lists. A
scatter/gather list is simply a list of elements which describe all the physical blocks of memory that
make up a virtual block of memory. For example, a 64KB contiguous virtual buffer within a ring-3
application may consist of a partial 4KB physical page, 15 full 4KB physical pages, and another partial
4KB page for a total of 17 physical blocks of memory. The starting address and size of a physical block
is stored within a single scatter/gather element, so the above 64KB buffer would require a full 17
scatter/gather elements. The scatter/gather list is passed to the DMA controller on the SCSI host
adapter to help it walk through the transfer of data. This is where the 64KB transfer limitation is
rooted—the 17 elements and the page size of 4KB.

Given the above, there are two ways to increase the transfer size beyond 64KB. The first is increase the
number of scatter gather elements allowed, and the second is to decrease the fragmentation of the
physical buffers underlying a given virtual buffer. Increasing the allowed number of scatter/gather
elements is not allowed under Windows 95 or Windows NT 3.51, but in NT 4.0 there is a registry
setting that allows the lists to be expanded to up to 255 elements. The registry entry is specified on a
per-bus basis, and the REG_DWORD value within HKEY_LOCAL_MACHINE is:

System\CurrentControlSet\Services\DriverName\Parameters\Devicen\MaximumSGList

The DriverName is the name of the miniport driver, such as AIC78XX, and n in Devicen is the bus
number assigned at initialization. If a value is present in this subkey at device initialization, the SCSI
port driver uses MaximumSGList as the initial maximum for scatter/gather list elements. The miniport
can lower this value, and its can’t be set any higher than 255. What this means is that the miniport must
support the higher value, and if it does you will be able to do transfers of up to 1020KB within ASPI.

The second method for getting larger transfers involves a reduction in the number of physical memory
blocks which make up a buffer. We have noticed that buffers are normally fairly fragmented, even
down to the page level. A 512KB buffer would therefore typically have 128 4KB physical pages with
each page starting at a discontiguous address from the previous one. The end result is that a 128
element scatter/gather element would be required to describe the buffer. However, let’s say that we
have a 512KB buffer made up of 16 32KB physical blocks. Each physical block consists of 4 back-to-
back 4KB physical pages. Such a buffer would only require 16 scatter/gather elements, and a transfer
could be performed using this buffer.

Both Windows 95 and Windows NT have ways that such largely contiguous buffers can be pieced
together through either a VxD or a Kernel Mode Driver (KMD). Remember, though, that even with
contiguous buffers there is a 512KB transfer limit in Windows 95, and a practical 64MB transfer limit
in Windows NT. The Windows 95 limit cannot be exceeded, and it is debatable whether or not the
64MB barrier can be broken (through chained MDLs).

ASPI provides two functions – GetASPI32Buffer and FreeASPI32Buffer – which perform dynamic
allocation of largely contiguous buffers. The ASPI functions rely on assistance from the ASPI ring-0
drivers. They work fairly well under Windows 95, but they make direct non-paged pool allocations on
Windows NT. This greatly increases the chance of a memory allocation failure in NT, and forces us to

look at an alternative method on that operating system. If you are interested in these functions, make
sure you have the latest version of the ASPI for Win32 specification.

Under Windows NT large contiguous blocks of memory are really only available during while the
system is initializing. During this time a KMD may use the MmAllocateContiguousMemory function
to allocate a big block of memory which is purely contiguous (single scatter/gather element). This
buffer can be mapped into the UserMode address space using a call to MmMapLockedPages. Of
course, this call requires an MDL, and that is where the 64MB limit and the question about chained
MDLs comes into play.

Please note that there are no source code samples for the above techniques, but that there is enough
information for some versed in the Windows 95 or Windows NT DDK to implement a solution.

Q: Why don’t SC_ABORT_SRB and SC_RESET_DEV SRBs work?

A: The ASPI SRBs to abort and reset are supported for legacy code which is being ported. The commands
will succeed, but the lower operating system layers ignore the commands. In the future, these may start
working, but for now the best alternative is to use the SC_GETSET_TIMEOUTS SRB documented in
the latest ASPI for Win32 specification. This command is not supported in ASPI for DOS or ASPI for
Win16, so your application must be ported to Win32 to support per-process/per-target timeouts.

Q: Why do my SC_EXEC_SCSI_CMD SRBs get aborted without reason?

A: In our experience, an unexplained abort or error is usually caused by a third party bus-reset. In other
words, someone besides you (could be another driver, the operating system, or another peripheral on the
SCSI bus) has reset the SCSI bus while you have I/O active.

One particularly common reason for this is lack of disconnects on devices which hold the SCSI bus for
excessively long periods. If such a device holds the SCSI bus for too long, other I/O for a different
target may time out (for example, page file I/O for a hard drive has a 3 second timeout). When such a
timeout occurs the entire SCSI bus is reset and all the pending I/O is cancelled. In this case your
operation will complete with an aborted status. The solution is to make sure that devices which have
long operations (color calibrations, etc.) support disconnects.

Q: Why does SC_HA_INQUIRY return a maximum SCSI target count different from what I
expect when using non-SCSI buses?

A: ASPI does not return the exact same value that the miniport reports back to the SCSI applications.
Some SCSI applications expect SCSI-like numbers to come back from the SC_HA_INQUIRY call, and
they do not perform well with the strange values that come back from those miniports. For example,
the ATAPI miniport may return a max target count of 2 to ASPI internally, but ASPI will convert this to
an 8 before returning. ASPI then transparently blocks access to any target ID from 2 to 7. This allows
the application to get good SCSI-like max target counts (8, 16, 32).

In general, ASPI will return power-of-two numbers, and as long as that number matches or exceeds the
number of targets you can have on a real bus then you shouldn’t worry. However, you may want to
consider removing any fields from your dialog boxes which display the maximum target count for the
user.

Q: Why isn’t my device recognized by any ASPI APIs after boot?

A: This is usually related to a problem with how the device interacts with Windows 95 and Windows NT.
Both operating systems have some real quirks when it comes to enumeration of the SCSI bus. If your
device does not behave just the way they expect, then it is simply dropped from the list of devices
which are supported.

The biggest quirk is that SCSI devices must, in general, be powered on when the system boots. If the
device is not powered on during the initial scan, then the device will not be visible until a rescan of the

SCSI bus is forced. There is an ASPI command to accomplish this in NT and 95, but it is not until
version 4.53 or later of ASPI that these commands were fully functional.

Another quirk is related to logical unit numbers in Windows 95. Windows 95 assumes that LUNs on a
target are consecutively numbered, and it abandons a scan as soon as it sees an “empty” LUN. For
example, a device at ID 4 with LUN 0, 1, 2, 3 would be seen just fine. A device with LUNS 0, 2, 3, 4,
5, 6, 7 would only show up to ASPI at LUN 0 because of the limitation in the operating system scan.

There are other issues as well: an error during scan drops a device, not supporting certain messages can
cause a dropped device, etc. It is best to say that most problems related to missing devices do not have
much to do with ASPI, but are usually related to differences of opinion on the SCSI specification
between the device and the operating system. Understand, though, that a device which meets
Microsoft’s view of SCSI usually has pretty solid firmware.

Q: Why are certain CDBs being rejected by my device?
Why does my device hang when I send it this command?
Why isn’t ASPI following the SCSI specification with our new device?

A: We really don’t know, because these are not ASPI problems. ASPI is not directly involved in any of
these failures. ASPI takes CDB blocks and, without looking at them, sends them to the operating
system to be executed. What happens from there is highly dependent on the operating system, the
miniport, the SCSI adapter hardware, and on the peripheral. Most of these problems require a SCSI bus
analyzer to diagnose, and may require special debugging of the target peripheral firmware. Adaptec’s
ASPI technical support does not assist in these situations.

ASPI for Win32 Questions

Q: Why should I use event notification?

A: Because ASPI requests which use polling or posting force ASPI to start and maintain a background
thread. This thread in turn issues the ASPI request using event notification and then waits for
completion. This means that if you use event notification you cut down on resources and eliminate a
layer of code between you and the kernel mode ASPI driver. Your code will run faster and be smaller.

Q: Why is ASPI for Win32 running so slowly?

A: You may not be using event notification as your completion method. Requests which use polling or
posting for their completion method force ASPI to start and maintain a background thread. This thread
in turn issues the ASPI request using event notification and waits for completion. When the event
completes, the ASPI thread (which runs at slightly higher priority) must be scheduled so that it can
complete the request and perform the callback. If you are polling, there may quite a delay before your
own applications wakes up enough to realize that the request has been completed.

Q: Why doesn’t my process ever complete in Windows NT?

A: A process is not really a unit of execution, so the real problem here is that one or more threads owned
by your process have not completed. Windows NT keeps track of which thread has sent each I/O
request, including those from ASPI. If a process is being terminated and any of these I/O requests are
still outstanding (say the SCSI device hung and the timeout has not yet occurred), then NT will attempt
to cancel this I/O. Unfortunately, SCSI requests which have hit an adapter are very hard to cancel, and
NT therefore will decide that it is not appropriate for the thread to terminate. The thread will remain
alive until the I/O completes, which could be as long as 30 hours. The solution is to use shorter
timeouts, and make sure that all of your I/O has completed before you exit the application.

Q: How do I build a LIB file for my compiler?

A: First, remember to use explicit dynamic linking (i.e. Loadlibrary/GetProcAddress) whenever possible.
It gives you more control, and it is capable of handling different ASPI revisions that implicit dynamic
linking (LIB file) cannot.

If you are still determined to use implicit dynamic linking, then you really have two choices: write a
DEF file and link it directly to your program with an IMPORTS section, or build a LIB file. From the
question, it is obvious that we want a LIB file.

Consider the Microsoft tools first. You will need to write a DEF file which contains a “LIBRARY
WNASPI32” statement and then an EXPORTS statement with one or more of the ASPI function names.
For example, the following would work:

LIBRARY WNASPI32
EXPORTS

GetASPI32SupportInfo @1
SendASPI32Command @2

Take this DEF file (call it WNASPI32.DEF) and run it through the LIB command as follows:

LIB /DEF:WNASPI32.DEF /MACHINE:IX86

That’s it! There should now be a WNASPI32.LIB file in the same directory as the WNASPI32.DEF
file, and the LIB can be linked with your application to get an implicit dynamic link at load.

The Borland compiler is another popular compiler. It has a special utility to automate all of the above
steps. Just use IMPLIB on WNASPI32.DLL to form an appropriate LIB file.

Q: Can I use ASPI for Win32 from Microsoft Visual Basic  or Borland  Delphi ?

A: Yes. Anything which can call a function in a DLL using the ‘C’ calling convention should be able to
use ASPI. There is no support for this, however, and you will be forced to write your own header files
and function declarations using the SDK header files as a starting point.

ASPI for Win16 Questions

Q: Why does my ASPI for Win16 application “hang” while waiting for a posted completion
in Windows NT?

A: Unlike Windows 95, the Windows NT implementation of ASPI for Win16 relies on “thunking” to get
its work done. Thunking is a one way process, however, and commands from Win16 (the
WINASPI.DLL) to Win32 (WNASPI32.DLL) cannot be directly returned. When ASPI for Win32
completes the ASPI for Win16 request, it must post a message to the message queue of a hidden Win16
application residing in the same NTVDM as the ASPI for Win16 application. The message causes
WOWPOST.EXE to complete processing of the original Win16 SRB. The problem with this is that
Win16 applications are cooperatively multi-tasked. WOWPOST.EXE cannot process the ASPI
completion messages unless the ASPI for Win16 application is occasionally issuing
GetMessage/PeekMessage calls to yield control. If the ASPI for Win16 application does not yield
control ever (say it spins in a really tight loop), then the posting callback cannot ever occur.

Q: How do I properly declare a posting callback under the different compilers?

A: Check you compilers documentation for ways of implementing interrupt routines. The same issues
apply for an interrupt routine as an ASPI callback function. Under Microsoft’s Visual C++ 1.52, for
example, a proper declaration might look something like this:

#pragma check_stack(off)
void __far _pascal _export __loadds ASPIPostProc(LPSRB DoneSRB){}
#pragma check_stack(on)

Of particular importance is the “__loadds” keyword which takes care of the classic DS!=SS in 16-bit
code. Note that the same flags should not be used when declaring a callback for ASPI for Win32. In
particular, the callback does not occur at interrupt time as it does in ASPI for Win16, and it is also a ‘C’
style calling convention. This requires, at the very least, that the __loadds and _pascal keywords go
away.

ASPI for DOS Questions

Q: Should I load DOS ASPI managers within CONFIG.SYS so that my application can use
the ASPI for DOS API from within a Windows 95 DOS box?

A: No. Early versions of ASPI for Windows 95 would attempt to chain into ASPI for DOS drivers when
there was no corresponding miniport. This caused several problems and the feature has been removed
in the latest versions of ASPI. Since the ASPI for DOS API is supported on any host adapter with a
valid miniport driver, and since there are now miniports for virtually ever adapter, there is no need for
real-mode DOS ASPI drivers to be loaded in CONFIG.SYS. The only exception is when there is a
DOS ASPI application that loads in CONFIG.SYS or AUTOEXEC.BAT before Windows 95 starts.

Q: Can my application use ASPI for DOS within a Windows NT DOS box?

A: No. ASPI for DOS is not a supported API under Windows NT.

