
July 1, 1998 1 Adaptec

Advanced SCSI Programming Interface

ASPI for Win32
Technical Reference

July 1, 1998

ü

July 1, 1998 2 Adaptec

Copyright

Copyright © 1989-1998 Adaptec, Inc. All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written consent of Adaptec, Inc., 691South Milpitas Blvd., Milpitas,
CA 95035.

Trademarks

Adaptec, the Adaptec logo, and AHA are trademarks of Adaptec, Inc. which may be registered in some
jurisdictions.

All other trademarks are owned by their respective owners.

Changes

The material in this document is for information only and is subject to change without notice. While reasonable
efforts have been made in the preparation of this document to assure its accuracy, Adaptec, Inc. assumes no
liability resulting from errors or omissions in this document, or from the use of the information contained herein.

Adaptec reserves the right to make changes in the product design without reservation and without notification to
its users.

Adaptec Technical Support and Services

If you have questions about installing or using the host adapter, check this document first—you will find
answers to most of your questions here. If you need further assistance, please contact us. We offer the following
support and information services:

• For technical support (answers to technical questions, information about the Adaptec BBS, and access to
the Interactive Fax system), call 800-959-SCSI (7274) or 408-945-2550, 24 hours a day, 7days a week. To
speak with a product support representative, call 408-934-SCSI (7274), M–F: 6:00 a.m. to 5:00p.m., Pacific
Time.

• For sales information, call 800-959-SCSI (7274) or 408-945-2550, M–F: 6:00a.m. to 5:00 p.m., Pacific
Time.

• The Adaptec Electronic Bulletin Board Service (BBS) provides information on software upgrades, new
releases, answers to common questions, and other topics. The BBS is available 24 hours a day, 7 days a
week, at 408-945-7727; 1200/2400/9600/14,400/28,800 baud, 8 data bits, 1stop bit, no parity.

• The Adaptec Interactive Fax system provides answers to common questions and current information about
Adaptec products and services. The Adaptec Interactive Fax system is available 23 hours a day, 7 days a
week. The Fax system is out of service 1 hour each day. You can call this service directly at 408-957-7150.

• To order Adaptec software and SCSI cables, call 800-442-SCSI (7274) or 408-957-SCSI (7274), M–F:
6:00 a.m. to 5:00 p.m., Pacific Time.

• To request additional documentation for Adaptec products, call 800-934-2766 or 510-732-3829, M–F: 6:00
a.m. to 5:00 p.m., Pacific Time.

July 1, 1998 3 Adaptec

ASPI for Win32 Overview
The architecture of SCSI makes it possible to access a wide variety of devices using a single bus linked to a host
computer with a SCSI host adapter. Support for peripheral devices in Windows 95 and Windows NT is
normally achieved through device specific drivers layered on top of the operating systems’ native SCSI support.

Because of the tremendous diversity of SCSI devices, no driver can support all SCSI peripherals. Instead,
separate drivers are needed for each major class of installed SCSI device. These drivers share the host adapter
hardware through the operating systems’ native SCSI support. The native SCSI layers are different between
Windows 95 and Windows NT. In addition, development and debugging of VxDs or kernel mode drivers can
be very difficult. The need for a standard SCSI programming interface to simplify SCSI application
development and ease the porting of SCSI applications from one Win32 platform to another brought ASPI for
Win32 into existence.

The Advanced SCSI Programming Interface (ASPI) for Win32 was designed to increase compatibility and
simplify the connection of SCSI peripheral devices like tape, CD-ROM, WORM, magneto-optical, scanners,
and other devices. It defines a protocol for SCSI applications (called ASPI modules) to submit I/O requests to a
single operating system driver (called the ASPI manager). Access to the operating system driver is made
through a Dynamic Link Library named WNASPI32.DLL.

Before Beginning

Before you begin your ASPI for Win32 development effort, be sure that you have a solid understanding of the
SCSI specifications. Much of your success in developing an ASPI module is dependent on your understanding
of these specifications. Here are sources for the specifications:

SCSI-1 and CCS: American National Standards Institute
11 West 42nd Street,
NY, NY 10036
Phone: (212) 642-4900
Fax: (212) 302-1286

SCSI-2: Global Engineering Documents
7730 Carondelet Ave, Ste 407
Clayton, MO 63105
Phone: (800) 854-7179
Phone: (314) 726-0444
Fax: (314) 726-6418

SCSI BBS: (719) 574-0424

In addition, it is highly recommended that you acquire the technical reference manuals for any SCSI hardware
which your ASPI module intends to support. These manuals can be obtained from the hardware manufacturer,
and they provide detailed information on which SCSI commands are supported and how they are implemented.

July 1, 1998 4 Adaptec

Programming Conventions

This specification contains function prototypes and structure definitions with the following data types:

Type Size (Bytes) Description
VOID N/A Indicates lack of a return value or lack of function arguments.
BYTE 1 Unsigned 8-bit value.
WORD 2 Unsigned 16-bit value.
DWORD 4 Unsigned 32-bit value.
LPVOID 4 Generic pointer. Used in SRB fields which require either a pointer to a

function or a Win32 handle (for example, SRB_PostProc).
LPBYTE 4 Pointer to an array of BYTEs. Mainly used as a buffer pointer.
LPSRB 4 Generic pointer to one of the SRB_* structures defined below.

Unless otherwise noted, all multibyte fields follow Intel's byte order of low byte first and end with the high byte.
For example, if there is a 2-byte offset field, the first byte is the low byte of the offset while the second byte is
the high byte of the offset.

All structure fields marked reserved must be set to zero, and structures must be packed! Packed means that byte
alignment is used on all structure definitions. Microsoft compilers allow byte packing to be set through the use
of “#pragma pack(1)” while Borland compilers allow packing to be set with “#pragma option -a1”. See your
compiler documentation for more information. Failure to pack structures and zero reserved fields can cause
system instability, including crashes.

All ASPI for Win32 functions are exported from WNASPI32.DLL using the ‘C’ calling convention
(specifically, __cdecl as implemented by Microsoft’s compilers). With the ‘C’ calling convention the caller
pushes the last function argument on the stack first (the first argument has the lowest memory address), and the
caller is responsible for popping arguments from the stack.

Programming Guidelines

The following are some general guidelines to keep in mind while reading this specification and while writing
ASPI for Win32 applications:

• If you are using explicit dynamic linking, remember that the ASPI for Win32 DLL is named
WNASPI32.DLL and not WINASPI.DLL. Make sure to call LoadLibrary appropriately. Similarly, make
sure to use WNASPI32.LIB instead of WINASPI.LIB when using implicit dynamic linking.

• ASPI for Win32 is fully re-entrant and permits overlapped, asynchronous I/O. ASPI modules can send
additional ASPI requests while others are pending completion. Be sure to use separate SRBs for each ASPI
request.

• SRB structure definitions are different in ASPI for Win32 from those in ASPI for Win16; however,
structure names are consistent with those used in ASPI for Win16. If you would like to use one source base
for both 16- and 32-bit applications, make sure that you conditionally compile with the appropriate include
files for each programming model. Include files are available in the ASPI developer’s kit.

• For requests requiring data transfers, the direction bits in the SRB_Flags field must be set correctly.
Direction bits are no longer optional for data transfers. This means that SRB_DIR_SCSI is no longer a
valid setting. For requests not requiring data transfers, the direction bits are ignored.

• Be sure that buffers are aligned according to the buffer alignment mask returned by the SC_HA_INQUIRY
command. An alignment of at least a double word is recommended.

• ASPI SCSI Request Blocks (SRBs) and data buffers do not need to be in page-locked memory. The ASPI
manager takes care of locking buffers and SRBs. This is different from previous versions of ASPI for
Win16 which required the application to page lock both the SRB and the data buffer.

July 1, 1998 5 Adaptec

• If an error SS_BUFFER_TO_BIG is returned by the SendASPI32Command routine, you should break
the transfer down into multiple 64KByte transfers or less. Another alternative is to use the
GetASPI32Buffer/FreeASPI32Buffer calls to allocate large transfer buffers. For maximum
compatibility, however, we strongly recommend that you do not request transfer sizes larger than 64KBytes.

• If you send an ASPI request with posting (callbacks) enabled, the post procedure will always be called.
This is different from previous versions of ASPI for DOS and ASPI for Win16 which only performed the
callback if SS_PENDING was returned from SendASPI32Command.

• The CDB area has been fixed in length at 16. Therefore, the sense data area no longer shifts location
depending on command length as in ASPI for Win16. If you are developing an application targeted only at
Win32, you no longer need to account for the “floating” sense buffer.

• When scanning for devices, the SendASPI32Command may also return the status SS_NO_DEVICE in
the SRB_Status field. Check for this exception in addition to the host adapter status HASTAT_SEL_TO.

July 1, 1998 6 Adaptec

Calling ASPI Functions
Applications which utilize ASPI for Win32 are known as ASPI modules. ASPI modules interact with ASPI
through WNASPI32.DLL which is a dynamic-link library with five entry points:

Entry Point Description
GetASPI32SupportInfo Initializes ASPI and returns basic configuration information.
SendASPI32Command Submits SCSI Request Blocks (SRBs) for execution by ASPI.
GetASPI32Buffer Allocates buffers which meet Win95/WinNT large transfer requirements.
FreeASPI32Buffer Releases buffers previously allocated with GetASPI32Buffer .
TranslateASPI32Address Translates ASPI HA/ID/LUN address triples to/from Win95 DEVNODEs.

Note that three of these functions—GetASPI32Buffer , FreeASPI32Buffer , and
TranslateASPI32Address —did not become a part of ASPI for Win32 until version 4.01 of EZ-SCSI.

In order to access these five functions, they must be resident in memory. Dynamic linking is the process by
which Windows 95 and Windows NT loads dynamic-link libraries (DLLs) into memory and then resolves
application references to functions within those DLLs. There are two ways in which this load/resolve sequence
is handled: explicitly or implicitly.

Explicit Dynamic Linking

Explicit dynamic linking occurs when applications or other DLLs explicitly load a DLL using LoadLibrary and
then manually resolve references to individual DLL functions through calls to GetProcAddress. This is the
preferred method for loading and calling ASPI for Win32. Explicit dynamic linking allows complete control
over when ASPI is loaded and how load errors are handled. It also is the only way to detect if the three new
ASPI functions are available for use in an application.

The following block of code is all that is required to load ASPI:

HINSTANCE hinstWNASPI32;

hinstWNASPI32 = LoadLibrary("WNASPI32");
if(!hinstWNASPI32)
{
 // Handle ASPI load error here. Usually this involves the display of an
 // informative message based on the results of a call to GetLastError().
}

Once a valid instance handle for ASPI is obtained, GetProcAddress is used to obtain addresses for each of the
ASPI for Win32 entry points:

DWORD (*pfnGetASPI32SupportInfo)(void);
DWORD (*pfnSendASPI32Command)(LPSRB);
BOOL (*pfnGetASPI32Buffer)(PASPI32BUFF);
BOOL (*pfnFreeASPI32Buffer)(PASPI32BUFF);
BOOL (*pfnTranslateASPI32Address)(PDWORD, PDWORD);

pfnGetASPI32SupportInfo = GetProcAddress(hinstWNASPI32, "GetASPI32SupportInfo");
pfnSendASPI32Command = GetProcAddress(hinstWNASPI32, "SendASPI32Command");
pfnGetASPI32Buffer = GetProcAddress(hinstWNASPI32, "GetASPI32Buffer");
pfnFreeASPI32Buffer = GetProcAddress(hinstWNASPI32, "FreeASPI32Buffer");
pfnTranslateASPI32Address = GetProcAddress(hinstWNASPI32,"TranslateASPI32Address");

At this point there should be a valid address for each of the five functions. If you have an old version of ASPI
then the last three function addresses will be NULL. This case should be handled by disabling all use of new

July 1, 1998 7 Adaptec

features in your ASPI module. It is also good practice to check pfnGetASPI32SupportInfo and
pfnSendASPI32Command for NULL as well. These variables will be NULL if there is an error accessing the
DLL. If either of these two functions have NULL addresses your application should cease its use of ASPI and
unload WNASPI32.DLL with a call to FreeLibrary.

Using the addresses returned from GetProcAddress is very simple. Just use the variable name wherever you
would normally use the a function name. For example,

DWORD dwASPIStatus = pfnGetASPI32SupportInfo();

will call the GetASPI32SupportInfo and place the result in dwASPIStatus. Of course, if one of these
function pointers is NULL and you make a call to it, your application will crash.

Implicit Dynamic Linking

Implicit dynamic linking occurs when a dependent DLL is loaded as a result of loading another module. This
dependency can be established either by listing exported functions from the DLL in the IMPORTS section of a
“.DEF” file linked with the application, or by including the WNASPI32.LIB file (from the ASPI SDK) on the
linker command line of the calling application.

Implicit dynamic linking is not recommended for three reasons:

• You cannot control when ASPI is loaded. Like anything else, ASPI consumes system resources. When you
use implicit dynamic linking those resources are allocated as soon as the application starts, and they remain
allocated until the application shuts down. With explicit dynamic linking the application controls when
(and if) ASPI is loaded.

• You have no control over how load errors are reported to users. If ASPI is not found during an implicit
load a fairly ugly error message (sometimes two) is displayed by the operating system. If you use explicit
loading in conjunction with a call to SetErrorMode(SEM_NOOPENFILEERRORBOX) then your
application can fully handle any load errors on its own.

• Your application cannot recover if it relies on new ASPI features and it is run with an older version of
ASPI. If your application relies on GetASPI32Buffer , FreeASPI32Buffer , or
TranslateASPI32Address , and then that function is not found in the loaded version of
WNASPI32.DLL, then the load fails. By using explicit dynamic linking the application can alter its
behavior so that the functions are not used. For example, an application which “relies” on
TranslateASPI32Address could simply disable Plug and Play support if the function is not found in the
DLL.

July 1, 1998 8 Adaptec

GetASPI32SupportInfo
The GetASPI32SupportInfo function returns the number of host adapters installed and ensures that the
ASPI manager is initialized properly. This function must be called once at initialization time, before
SendASPI32Command is accessed.

DWORD GetASPI32SupportInfo(VOID);

Parameters

None.

Return Values

The DWORD return value is split into three pieces. The high order WORD is reserved and shall be set to 0.
The two low order bytes represent a status code (bits 15-8) and a host adapter count (bits 7-0).

If the call to GetASPI32SupportInfo is successful, then the status byte is set to either SS_COMP or
SS_NO_ADAPTERS. If set to SS_COMP then the host adapter status will be non-zero. An error code of
SS_NO_ADAPTERS indicates that ASPI initialized successfully, but that it could not find any SCSI host
adapters to manage.

If the function fails the status byte will be set to one of SS_ILLEGAL_MODE, SS_NO_ASPI,
SS_MISMATCHED_COMPONENTS, SS_INSUFFICIENT_RESOURCES, SS_FAILED_INIT . See the table
of ASPI errors at the end of this manual for more information on each of the errors.

Remarks

The number of host adapters returned represents the logical bus count, not the true physical adapter count. For
host adapters with a single bus, the host adapter count and logical bus count are identical.

Example

This example returns the current status of ASPI for Win32.

BYTE byHaCount;
BYTE byASPIStatus;
DWORD dwSupportInfo;

dwSupportInfo = GetASPI32SupportInfo();
byASPIStatus = HIBYTE(LOWORD(dwSupportInfo));
byHaCount = LOBYTE(LOWORD(dwSupportInfo));

if(byASPIStatus != SS_COMP && byASPIStatus != SS_NO_ADAPTERS)
{
 // Handle ASPI error here. Usually this involves the display
 // of a dialog box with an informative message.
}

July 1, 1998 9 Adaptec

SendASPI32Command
The SendASPI32Command function handles all SCSI I/O requests. Each SCSI I/O request is handled
through a SCSI Request Block (SRB) which defines the exact ASPI operation to be performed.

DWORD SendASPI32Command(LPSRB psrb);

Parameters

psrb
All SRBs have a standard header, and the header contains a command code which defines the exact type of
SCSI I/O being requested.

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // ASPI request flags
 DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0
}
SRB_Header;

The SRB_Cmd field contains the command code for the desired SCSI I/O operation. This field can be set
to one of the following values.

Symbol Value Description
SC_HA_INQUIRY 0x00 Queries ASPI for information on specific host adapters.
SC_GET_DEV_TYPE 0x01 Requests the SCSI device type for a specific SCSI target.
SC_EXEC_SCSI_CMD 0x02 Sends a SCSI command (arbitrary CDB) to a SCSI target.
SC_ABORT_SRB 0x03 Requests that ASPI cancel a previously submitted request.
SC_RESET_DEV 0x04 Sends a BUS DEVICE RESET message to a SCSI target.
SC_GET_DISK_INFO 0x06 Returns BIOS information for a SCSI target (Win95 only).
SC_RESCAN_SCSI_BUS 0x07 Requests a rescan of a host adapter’s SCSI bus.
SC_GETSET_TIMEOUTS 0x08 Sets SRB timeouts for specific SCSI targets.

The use of the remaining header fields varies according to the command type. Each of the commands along
with their associated SRBs are described in detail in the following sections.

Return Values

The above ASPI commands may be broken into two categories: synchronous and asynchronous. All of the
SRBs are synchronous except for SC_EXEC_SCSI_CMD and SC_RESET_DEV which are asynchronous.

Calls to SendASPI32Command with synchronous SRBs will not return until execution of that SRB is
complete. Upon return the SRB_Status field will be set to the same value which is returned from
SendASPI32Command.

Calls to SendASPI32Command with asynchronous SRBs may return control to the caller before the submitted
SRB has completed execution. In this case the return value from this function is SS_PENDING, and the caller
will have to use polling, posting, or event notification to wait for SRB completion. Once completed, the
SRB_Status field contains the true completion status. Remember that while waiting for SRB completion, it is
always safe to submit additional SRBs to ASPI for execution.

July 1, 1998 10 Adaptec

See the “Waiting for Completion” and “ASPI for Win32 Errors” sections for more information on
synchronous/asynchronous SRBs and the various error codes which can be returned either from this function or
within an SRB_Status field.

July 1, 1998 11 Adaptec

SC_HA_INQUIRY
The SendASPI32Command function with command code SC_HA_INQUIRY is used to get information on
the installed host adapter hardware, including the number of host adapters installed.

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code = SC_HA_INQUIRY
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // Reserved, MUST = 0
 DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0
 BYTE HA_Count; // Number of host adapters present
 BYTE HA_SCSI_ID; // SCSI ID of host adapter
 BYTE HA_ManagerId[16]; // String describing the manager
 BYTE HA_Identifier[16]; // String describing the host adapter
 BYTE HA_Unique[16]; // Host Adapter Unique parameters
 WORD HA_Rsvd1; // Reserved, MUST = 0
}
SRB_HAInquiry, *PSRB_HAInquiry;

SRB Fields

SRB_Cmd (Input)
This field must contain SC_HA_INQUIRY (0x00).

SRB_Status (Output)
SC_HA_INQUIRY is a synchronous SRB. On return, this field is the same as the SendASPI32Command
return value and is set to either SS_COMP or SS_INVALID_HA.

SRB_HaId (Input)
This field specifies which installed host adapter the request is intended for. Host adapter numbers are
always assigned by the ASPI manager, beginning with zero. To determine the total number of host adapters
in the system set this field to 0 and then check the HA_Count value on return.
GetASPI32SupportInfo can also be used.

HA_Count (Output)
The number of host adapters detected by ASPI. For example, a return value of 2 indicates that host
adapters #0 and #1 are valid. The number of host adapters returned represents the logical bus count instead
of the true physical adapter count. For host adapters that support single bus only, the host adapter count and
logical bus count are identical. For host adapters that support multiple buses, the host adapter count
represents the total logical bus count.

HA_SCSI_ID (Output)
The SCSI ID of the host adapter on the SCSI bus. SCSI adapters usually use ID 7 as their SCSI ID.

HA_ManagerId (Output)
The ASCII string “ASPI for Win32”. The string is padded with spaces to the full width of the buffer, and it
is not null terminated.

HA_Identifier (Output)
An ASCII string describing the host adapter. The string is padded with spaces to the full width of the
buffer, and it is not null terminated.

July 1, 1998 12 Adaptec

HA_Unique (Output)
Host adapter unique parameters as follows.

Size Offset Description

WORD 0 Buffer alignment mask. The host adapter requires data buffer alignment
specified by this 16-bit value. A value of 0x0000 indicates no boundary
requirements (e.g. byte alignment), 0x0001 indicates word alignment,
0x0003 indicates double-word, 0x0007 indicates 8-byte alignment, etc.
The 16-bit value allows data buffer alignments of up to 65536-byte
boundaries. Alignment of buffers can be tested by logical ANDing (‘&’ in
‘C’) this mask with the buffer address. If the result is 0 the buffer is
properly aligned.

BYTE 2 Residual byte count. Set to 0x01 if residual byte counting is supported,
0x00 if not. See “Remarks” below for more information.

BYTE 3 Maximum SCSI targets. Indicates the maximum number of targets (SCSI
IDs) the adapter supports. If this value is not set to 8 or 16, then it should
be assumed by the application that the maximum target count is 8.

DWORD 4 Maximum transfer length. DWORD count indicating the maximum
transfer size the host adapter supports. If this number is less than 64KB
then the application should assume a maximum transfer count of 64KB.

Remarks

Residual byte length is the number of bytes not transferred to, or received from, the target SCSI device. For
example, if the ASPI buffer length for a SCSI INQUIRY command is set for 100 bytes, but the target only
returns 36 bytes; the residual length is 64 bytes. If the ASPI buffer length for a SCSI WRITE command is set
for 514 bytes but the target only takes 512 bytes, the residual length is 2 bytes. ASPI modules can determine if
the ASPI manager supports residual byte length by checking byte 1 of the HA_Unique field. See
SC_EXEC_SCSI_CMD for more information on enabling residual byte counting.

Example

This example sends an SC_HA_INQUIRY to host adapter #1, and, if successful, records the maximum transfer
length supported by the host adapter.

DWORD dwMaxTransferBytes;
SRB_HAInquiry srbHAInquiry;

memset(&srbHAInquiry, 0, sizeof(SRB_HAInquiry));
srbHAInquiry.SRB_Cmd = SC_HA_INQUIRY;
srbHAInquiry.SRB_HaId = 1;

SendASPI32Command((LPSRB)&srbHAInquiry);
if(srbHAInquiry.SRB_Status != SS_COMP)
{
 // Error in HAInquiry. Most likely SS_INVALID_HA.
 Return FALSE;
}

dwMaxTransferBytes = *(DWORD *)(srbHAInquiry.HA_Unique + 4);

July 1, 1998 13 Adaptec

SC_GET_DEV_TYPE
The SendASPI32Command function with command code SC_GET_DEV_TYPE enables you to identify the
devices available on the SCSI bus. A Win32 tape backup package, for example, can scan each target/LUN on
each installed host adapter looking for a device type corresponding to sequential access devices. This eliminates
the need for each Win32 application to duplicate the effort of scanning the SCSI bus for devices.

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code = SC_GET_DEV_TYPE
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // Reserved, MUST = 0
 DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0
 BYTE SRB_Target; // Target's SCSI ID
 BYTE SRB_Lun; // Target's LUN number
 BYTE SRB_DeviceType; // Target's peripheral device type
 BYTE SRB_Rsvd1; // Reserved, MUST = 0
}
SRB_GDEVBlock, *PSRB_GDEVBlock;

SRB Fields

SRB_Cmd (Input)
This field must contain SC_GET_DEV_TYPE (0x01).

SRB_Status (Output)
SC_GET_DEV_TYPE is a synchronous SRB. On return, this field is the same as the
SendASPI32Command return value and is set to SS_COMP, SS_INVALID_HA, or SS_NO_DEVICE.

SRB_HaId (Input)
This field specifies which installed host adapter the request is intended for.

SRB_Target (Input)
SCSI ID of target device.

SRB_Lun (Input)
Logical Unit Number (LUN) of target device.

July 1, 1998 14 Adaptec

SRB_DeviceType (Output)
The peripheral device type. The value is one of the codes defined by the SCSI specification.

Symbol Value Description

DTYPE_DASD 0x00 Direct-access device (e.g. magnetic disk)

DTYPE_SEQD 0x01 Sequential-access device (e.g. magnetic tape)

DTYPE_PRNT 0x02 Printer device

DTYPE_PROC 0x03 Processor device

DTYPE_WORM 0x04 Write-once device (e.g. some optical disks)

DTYPE_CDROM 0x05 CD-ROM device

DTYPE_SCAN 0x06 Scanner device

DTYPE_OPTI 0x07 Optical memory device (e.g. some optical disks)

DTYPE_JUKE 0x08 Medium changer device (e.g. jukeboxes)

DTYPE_COMM 0x09 Communication device

N/A 0x0A-0x0B Defined by ASC IT8 (Graphic arts pre-press devices)

N/A 0x0C-0x1E Reserved

DTYPE_UNKNOWN 0x1F Unknown or no device type

Example

This example scans the system for all CD-ROM drives (all targets must be at LUN #0). Please note that
MAX_HA_ID and MAX_TARGET_ID should be replaced with a host adapter count returned by
GetASPI32SupportInfo and a target count retrieved from a SC_HA_INQUIRY SRB performed within
the host adapter loop.

BYTE byHaId;
BYTE byTarget;
SRB_GDEVBlock srbGDEVBlock;

for(byHaId = 0; byHaId < MAX_HA_ID; byHaId++)
{
 for(byTarget = 0; byTarget < MAX_TARGET_ID; byTarget++)
 {
 memset(&srbGDEVBlock, 0, sizeof(SRB_GDEVBlock));
 srbGDEVBlock.SRB_Cmd = SC_GET_DEV_TYPE;
 srbGDEVBlock.SRB_HaId = byHaId;
 srbGDEVBlock.SRB_Target = byTarget;

 SendASPI32Command((LPSRB)&srbGDEVBlock);
 if(srbGDEVBlock.SRB_Status != SS_COMP) continue;

 if(srbGDEVBlock.SRB_DeviceType == DTYPE_CDROM)
 {
 // A CD-ROM exists at HA/ID/LUN = byHaId/byTarget/0.
 // Do whatever you want with it from here!
 }
 }
}

July 1, 1998 15 Adaptec

SC_EXEC_SCSI_CMD
The SendASPI32Command function with command code SC_EXEC_SCSI_CMD is used to execute a SCSI
I/O command. Once an ASPI client has initialized, virtually all I/O is performed with this command.

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code = SC_EXEC_SCSI_CMD
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // ASPI request flags
 DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0
 BYTE SRB_Target; // Target's SCSI ID
 BYTE SRB_Lun; // Target's LUN number
 WORD SRB_Rsvd1; // Reserved for Alignment
 DWORD SRB_BufLen; // Data Allocation Length
 LPBYTE SRB_BufPointer; // Data Buffer Pointer
 BYTE SRB_SenseLen; // Sense Allocation Length
 BYTE SRB_CDBLen; // CDB Length
 BYTE SRB_HaStat; // Host Adapter Status
 BYTE SRB_TargStat; // Target Status
 LPVOID SRB_PostProc; // Post routine
 BYTE SRB_Rsvd2[20]; // Reserved, MUST = 0
 BYTE CDBByte[16]; // SCSI CDB
 BYTE SenseArea[SENSE_LEN+2]; // Request Sense buffer
}
SRB_ExecSCSICmd, *PSRB_ExecSCSICmd;

SRB Fields

SRB_Cmd (Input)
This field must contain SC_EXEC_SCSI_CMD (0x02).

SRB_Status (Output)
SC_EXEC_SCSI_CMD is an asynchronous SRB. This field should not be examined until after the caller
has waited for proper completion of the SRB (see “Waiting for Completion”). Once completed, this field
may be set to a number of different values. The most common values are SS_COMP or SS_ERR.
SS_COMP indicates successful completion while SS_ERR indicates the caller should examine the
SRB_HaStat and SRB_TargStat fields for more information. See “ASPI for Win32 Error” for a
complete description of possible error codes.

SRB_HaId (Input)
This field specifies which installed host adapter the request is intended for. Host adapter numbers are
always assigned by the SCSI manager layer beginning with zero.

July 1, 1998 16 Adaptec

SRB_Flags (Input)
One or more of the following flags (note restrictions where they apply):

Symbol Value Description
SRB_POSTING 0x01 Enable posting. See “Waiting for Completion” for more

information. This flag and SRB_EVENT_NOTIFY are
mutually exclusive.

SRB_ENABLE_RESIDUAL COUNT 0x04 Enables residual byte counting assuming it is supported.
Whenever a data underrun occurs the SRB_BufLen field
is updated to reflect the remaining bytes to transfer.

SRB_DIR_IN 0x08 Data transfer is from SCSI target to host. Mutually
exclusive with SRB_DIR_OUT.

SRB_DIR_OUT 0x10 Data transfer is from host to SCSI target. Mutually
exclusive with SRB_DIR_IN .

SRB_EVENT_NOTIFY 0x40 Enable event notification. See “Waiting for Completion”
for more infomration. This flag and SRB_POSTING are
mutually exclusive.

SRB_Target (Input)
SCSI ID of target device.

SRB_Lun (Input)
Logical Unit Number (LUN) of target device.

SRB_BufLen (Input)
This field indicates the number of bytes to be transferred. If the SCSI command to be executed does not
transfer data (e.g., Test Unit Ready, Rewind, etc.), this field must be set to zero. If residual byte length is
supported (see “SC_HA_INQUIRY”) and selected (see SRB_Flags above), this field is returned with the
residual number of bytes (usually 0).

SRB_BufPointer (Input)
This field is a pointer to the data buffer. If there is no data to be transfered this field should be NULL.

SRB_SenseLen (Input)
This field indicates the number of bytes allocated at the end of the SRB for sense data. A request sense is
automatically generated if a check condition is presented at the end of a SCSI command. Please note that
under Windows NT it is not possible to reliably request more than 18 bytes of sense data.

SRB_CDBLen (Input)
This field establishes the length, in bytes, of the SCSI Command Descriptor Block (CDB). This value is
typically 6, 10, or 12. See the SCSI specification for more information on valid CDBs.

July 1, 1998 17 Adaptec

SRB_HaStat (Output)
Upon completion of the SCSI command, this field is set to the host adapter status. Do not examine this
status byte if SRB_Status is set to SS_COMP. It is only to be considered valid if there is unsuccessful
completion of the SRB.

Symbol Value Description
HASTAT_OK 0x00 Host adapter did not detect an error.
HASTAT_TIMEOUT 0x09 The time allocated for a bus transaction ran out.
HASTAT_COMMAND_TIMEOUT 0x0B SRB expired while waiting to be processed.
HASTAT_MESSAGE_REJECT 0x0D MESSAGE REJECT received while processing SRB.
HASTAT_BUS_RESET 0x0E A bus reset was detected.
HASTAT_PARITY_ERROR 0x0F A parity error was detected.
HASTAT_REQUEST_SENSE_FAILED 0x10 The adapter failed in issuing a Request Sense after a check

condition was reported by the target device.
HASTAT_SEL_TO 0x11 Selection of target timed out.
HASTAT_DO_DU 0x12 Data overrun.
HASTAT_BUS_FREE 0x13 Unexpected Bus Free.
HASTAT_PHASE_ERR 0x14 Target Bus phase sequence failure.

SRB_TargStat (Output)
Upon completion of the SCSI command, this field is set to the final SCSI target status. Do not examine this
status byte if SRB_Status is set to SS_COMP. It is only to be considered valid if there is unsuccessful
completion of the SRB. Note that the table below only covers the most common result codes. Check the
SCSI specification for more information on these and other status byte codes.

Symbol Value Description
STATUS_GOOD 0x00 No target status.
STATUS_CHKCOND 0x02 Check status (sense data is in SenseArea).
STATUS_BUSY 0x08 Specified Target/LUN is busy.
STATUS_RESCONF 0x18 Reservation conflict.

SRB_PostProc (Input)
If posting is enabled (SRB_POSTING) this field contains a pointer to a function. The ASPI manager calls
this function upon completion of the SRB. If event notification is enabled (SRB_EVENT_NOTIFY) this
field contains a handle to an event. The ASPI manager signals this event upon completion of the SRB. See
“Waiting for Completion” for more information.

CDBByte (Input)
This field contains the CDB as defined by the target's SCSI command set. The length of the SCSI CDB is
specified in the SRB_CDBLen field.

SenseArea (Output)
The SenseArea is filled with the sense data after a check condition (SRB_Status == SS_ERR and
SRB_TargStat == STATUS_CHKCOND). The maximum length of this field is specified in the
SRB_SenseLen field.

July 1, 1998 18 Adaptec

Example

This example sends a SCSI INQUIRY command to host adapter #0, target #5, LUN #0. When examining the
code, please note the following:

• Manual-reset events are used. The ResetEvent is not needed in this particular sample because we just
created the event, but it is good practice to put the reset immediately before every SendASPI32Command
call to make sure you don’t enter the routine with an event signalled.

• Because this is an asynchronous SRB, we fully wait for completion before checking the SRB_Status
byte. Also, we use dwASPIStatus instead of SRB_Status to check for a SS_PENDING return for the
same reason.

• There is an INFINITE timeout on the WaitForSingleObject because SRB timeouts are not the same
as event timeouts. Use SC_GETSET_TIMEOUT to associate a timeout with an SRB.

BYTE byInquiry[32];
DWORD dwASPIStatus;
HANDLE heventSRB;
SRB_ExecSCSICmd srbExec;

heventSRB = CreateEvent(NULL, TRUE, FALSE, NULL);
if(!heventSRB)
{
 // Couldn't get manual reset event, put error handling code here!
}

memset(&srbExec, 0, sizeof(SRB_ExecSCSICmd));
srbExec.SRB_Cmd = SC_EXEC_SCSI_CMD;
srbExec.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
srbExec.SRB_Target = 5;
srbExec.SRB_BufLen = 32;
srbExec.SRB_BufPointer = byInquiry;
srbExec.SRB_SenseLen = SENSE_LEN;
srbExec.SRB_CDBLen = 6;
srbExec.SRB_PostProc = (LPVOID)heventSRB;
srbExec.CDBByte[0] = SCSI_INQUIRY;
srbExec.CDBByte[4] = 32;

ResetEvent(hevenSRB);
dwASPIStatus = SendASPI32Command((LPSRB)&srbExec);
if(dwASPIStatus == SS_PENDING)
{
 WaitForSingleObject(heventSRB, INFINITE);
}

if(srbExec.SRB_Status != SS_COMP)
{
 // Error processing the SRB, put error handling code here.
}

July 1, 1998 19 Adaptec

SC_ABORT_SRB
The SendASPI32Command function with command code SC_ABORT_SRB is used to request that a pending
SRB be aborted. It should be issued on any I/O request that has not completed if the application wishes to halt
execution of that request. Success of the abort command is never assured.

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code = SC_ABORT_SRB
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // Reserved, MUST = 0
 DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0
 LPSRB SRB_ToAbort; // Pointer to SRB to abort
}
SRB_Abort, *PSRB_Abort;

SRB Fields

SRB_Cmd (Input)
This field must contain SC_ABORT_SRB (0x03).

SRB_Status (Output)
SC_ABORT_SRB is a synchronous SRB. On return, this field is the same as the SendASPI32Command
return value and is set to SS_COMP, SS_INVALID_HA, or SS_INVALID_SRB. Remember that a return
of SS_COMP does not indicate that the SRB to be aborted has been halted. Instead, it indicates that an
attempt was made at aborting that SRB. If the SRB to be aborted completes with SS_ABORTED then there
is positive indication that the original SC_ABORT_SRB worked.

SRB_HaId (Input)
This field specifies which installed host adapter the request is intended for. Host adapter numbers are
always assigned by the ASPI manager layer beginning with zero.

SRB_ToAbort (Input)
This field contains a pointer to the SRB which is to be aborted. The actual failure or success of the abort
operation is indicated by the status eventually returned in this SRB.

Remarks

As stated above, the success of an SC_ABORT_SRB command is never guaranteed. As a matter of fact, the
situations in which ASPI is capable of aborting an SRB already sent to the system are few and far between.

The original use for SC_ABORT_SRB was to terminate I/O which had timed out under ASPI for DOS and ASPI
for Win16. The nature of SC_ABORT_SRB under Win32 greatly reduces its usefulness. It is recommended that
the SC_GETSET_TIMEOUTS SRB be used to manage SRB timeouts in all new ASPI modules.

July 1, 1998 20 Adaptec

SC_RESET_DEV
The SendASPI32Command function with command code SC_RESET_DEV is used to send a SCSI Bus
Device reset to the specified target.

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code = SC_RESET_DEV
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // Reserved, MUST = 0
 DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0
 BYTE SRB_Target; // Target's SCSI ID
 BYTE SRB_Lun; // Target's LUN number
 BYTE SRB_Rsvd1[12]; // Reserved, MUST = 0
 BYTE SRB_HaStat; // Host Adapter Status
 BYTE SRB_TargStat; // Target Status
 LPVOID SRB_PostProc; // Post routine
 BYTE SRB_Rsvd2[36]; // Reserved, MUST = 0
}
SRB_BusDeviceReset, *PSRB_BusDeviceReset;

SRB Fields

SRB_Cmd (Input)
This field must contain SC_RESET_DEV (0x04).

SRB_Status (Output)
SC_RESET_DEV is an asynchronous SRB. This field should not be examined until after the caller has
waited for proper completion of the SRB (see “Waiting for Completion”). Once completed, this field may
be set to a number of different values. The most common values are SS_COMP or SS_ERR. SS_COMP
indicates successful completion while SS_ERR indicates the caller should examine the SRB_HaStat and
SRB_TargStat fields for more information. See “ASPI for Win32 Error” for a complete description of
possible error codes.

SRB_HaId (Input)
This field specifies which installed host adapter the request is intended for. Host adapter numbers are
always assigned by the SCSI manager layer beginning with zero.

SRB_Target (Input)
SCSI ID of target device.

SRB_Lun (Input)
Logical Unit Number (LUN) of target device. This field is ignored by ASPI for Win32, since SCSI BUS
DEVICE RESET is done on a per-target basis only.

July 1, 1998 21 Adaptec

SRB_HaStat (Output)
Upon completion of the SCSI command, this field is set to the host adapter status. Do not examine this
status byte if SRB_Status is set to SS_COMP. It is only to be considered valid if there is unsuccessful
completion of the SRB.

Symbol Value Description
HASTAT_OK 0x00 Host adapter did not detect an error.
HASTAT_TIMEOUT 0x09 The time allocated for a bus transaction ran out.
HASTAT_COMMAND_TIMEOUT 0x0B SRB expired while waiting to be processed.
HASTAT_MESSAGE_REJECT 0x0D MESSAGE REJECT received while processing SRB.
HASTAT_BUS_RESET 0x0E A bus reset was detected.
HASTAT_PARITY_ERROR 0x0F A parity error was detected.
HASTAT_REQUEST_SENSE_FAILED 0x10 The adapter failed in issuing a Request Sense after a check

condition was reported by the target device.
HASTAT_SEL_TO 0x11 Selection of target timed out.
HASTAT_DO_DU 0x12 Data overrun/underrun.
HASTAT_BUS_FREE 0x13 Unexpected Bus Free.
HASTAT_PHASE_ERR 0x14 Target Bus phase sequence failure.

SRB_TargStat (Output)
Upon completion of the SCSI command, this field is set to the final SCSI target status. Do not examine this
status byte if SRB_Status is set to SS_COMP. It is only to be considered valid if there is unsuccessful
completion of the SRB. Note that the table below only covers the most common result codes. Check the
SCSI specification for more information on these and other status byte codes.

Symbol Value Description
STATUS_GOOD 0x00 No target status.
STATUS_CHKCOND 0x02 Check status (sense data is in SenseArea).
STATUS_BUSY 0x08 Specified Target/LUN is busy.
STATUS_RESCONF 0x18 Reservation conflict.

SRB_PostProc (Input)
If posting is enabled (SRB_POSTING) this field contains a pointer to a function. The ASPI manager calls
this function upon completion of the SRB. If event notification is enabled (SRB_EVENT_NOTIFY) this
field contains a handle to an event. The ASPI manager signals this event upon completion of the SRB. See
“Waiting for Completion” for more information.

Remarks

The Windows 95 and Windows NT operating systems do not handle BUS DEVICE RESET properly at the
current time. For this reason, SC_RESET_DEV calls are not guaranteed to function properly. The command is
present mainly to keep older code ported from Win16 from failing.

July 1, 1998 22 Adaptec

SC_GET_DISK_INFO
The SendASPI32Command function with command code SC_GET_DISK_INFO is used to obtain
information about a disk type SCSI device. The information returned includes BIOS Int 13h control and
accessibility of the device, the drive’s Int 13h physical drive number, and the geometry used by the Int 13h
services for the drive.

Note: This command is not valid for Windows NT, which does not use the Int 13 interface.

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code = SC_GET_DISK_INFO
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // Reserved
 DWORD SRB_Hdr_Rsvd; // Reserved
 BYTE SRB_Target; // Target's SCSI ID
 BYTE SRB_Lun; // Target's LUN number
 BYTE SRB_DriveFlags; // Driver flags
 BYTE SRB_Int13HDriveInfo; // Host Adapter Status
 BYTE SRB_Heads; // Preferred number of heads translation
 BYTE SRB_Sectors; // Preferred number of sectors translation
 BYTE SRB_Rsvd1[10]; // Reserved
}
SRB_GetDiskInfo, *PSRB_GetDiskInfo;

SRB Fields

SRB_Cmd (Input)
This field must contain SC_GET_DISK_INFO (0x06).

SRB_Status (Output)
SC_GET_DISK_INFO is a synchronous SRB. On return, this field is the same as the
SendASPI32Command return value and is set to SS_COMP, SS_INVALID_HA, or SS_NO_DEVICE, or
SS_INVALID_SRB.

SRB_HaId (Input)
This field specifies which installed host adapter the request is intended for. Host adapter numbers are
always assigned by the ASPI manager layer beginning with zero.

SRB_Target (Input)
SCSI ID of target device.

SRB_Lun (Input)
Logical Unit Number (LUN) of target device.

July 1, 1998 23 Adaptec

SRB_DriveFlags (Output)
Upon completion of the SCSI command this field is set as follows:

Symbol Value Description
DISK_NOT_INT13 0x00 Device is not controlled by Int 13h services
DISK_INT13_AND_DOS 0x01 Device is under Int 13h control and is claimed by DOS
DISK_INT1 0x02 Device is under Int 13h control but not claimed by DOS

SRB_Int13DriveInfo (Output)
Upon completion of the SCSI command, the ASPI manager sets this field with the physical drive number
that Int 13h services assigned to the device. The valid drive numbers are 0x00 to 0xFF. This field is only
valid if SRB_DriveFlags is set to DISK_INT13_AND_DOS or DISK_INT13 .

SRB_Heads (Output)
Upon completion of the SCSI command, the ASPI manager sets this field to the number of heads the Int
13h services is using for this device’s geometry. The valid drive numbers are 0x00 to 0xFF. This field is
only valid if SRB_DriveFlags is set to DISK_INT13_AND_DOS or DISK_INT13 .

SRB_Sectors (Output)
Upon completion of the SCSI command, the ASPI manager sets this field to the number of sectors the Int
13h services is using for this device’s geometry. The valid drive numbers are 0x00 to 0xFF. This field is
only valid if SRB_DriveFlags is set to DISK_INT13_AND_DOS or DISK_INT13 .

Example

This example obtains disk information from device LUN 0, SCSI ID 2, attached to host adapter 0.

SRB_GetDiskInfo srbGetDiskInfo;

memset(&srbGetDiskInfo, 0, sizeof(SRB_GetDiskInfo));
srbGetDiskInfo.SRB_Header.SRB_Cmd = SC_GET_DISK_INFO;
srbGetDiskInfo.SRB_Target = 2;

SendASPI32Command((LPSRB)&srbGetDiskInfo);
if(srbGetDiskInfo.SRB_Status != SS_COMP)
{
 // Error handling GetDiskInfo SRB. Error handling code goes here!
}

July 1, 1998 24 Adaptec

SC_RESCAN_SCSI_BUS
The SendASPI32Command function with command code SC_RESCAN_SCSI_BUS is used to rescan the
SCSI bus specified by the host adapter number in the SRB. It will instruct the I/O subsystem to rescan the SCSI
bus and update both the system device map and the ASPI manager device tables.

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code = SC_RESCAN_SCSI_BUS
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // Reserved, MUST = 0
 DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0
}
SRB_RescanPort, *PSRB_RescanPort;

SRB Fields

SRB_Cmd (Input)
This field must contain SC_RESCAN_SCSI_BUS (0x07).

SRB_Status (Output)
SC_RESCAN_SCSI_BUS is a synchronous SRB. On return, this field is the same as the
SendASPI32Command return value and is set to SS_COMP, or SS_INVALID_HA.

SRB_HaId (Input)
This field specifies which installed host adapter the request is intended for. Host adapter numbers are
always assigned by the ASPI manager layer beginning with zero.

Remarks

Under Windows NT, the I/O subsystem does not rescan devices/IDs it already knows about. The impact of this
is that it will detect new devices but will not detect removal of devices or exchanging of devices.

Under Windows 95, there can be a substantial delay between the time a rescan is initiated with this command
and the time at which new devices are added or old devices are removed from the device map. The best way to
deal with this is to rely on the Plug and Play messages in conjunction with TranslateASPI32Address , or
to simply perform your own refresh five or ten seconds after the rescan command is issued.

There is no way to force a rescan of the entire system. It is up to the operating system to detect the arrival of
new host adapters (for example, PCMCIA) through Plug and Play, if it is available.

Example

The following example forces a rescan of the SCSI bus attached to host adapter #0:

SRB_RescanPort srbRescanPort;
memset(&srbRescanPort, 0, sizeof(SRB_RescanPort));
srbRescanPort.SRB_Cmd = SC_RESCAN_SCSI_BUS;

SendASPI32Command((LPSRB)&srbRescanPort);
if(srbRescanPort.SRB_Status != SS_COMP)
{
 // Error issuing port rescan. Error handling code goes here.
}

July 1, 1998 25 Adaptec

SC_GETSET_TIMEOUTS
The SendASPI32Command function with command code SC_GETSET_TIMEOUTS enables you to set target
specific timeouts in 1/2 second increments. Once set, a timeout applies to all SCSI commands sent through the
SC_EXEC_SCSI_CMD command. Timeouts are process specific, so two different applications may set
different timeouts for the same target. The SRB_HaId , SRB_Target , and SRB_Lun fields may be set to a
wildcard value to ease the setting of timeouts on multiple targets. Note that by default, all target timeouts are set
to 30 hours (the maximum allowed).

typedef struct
{
 BYTE SRB_Cmd; // ASPI command code = SC_GETSET_TIMEOUTS
 BYTE SRB_Status; // ASPI command status byte
 BYTE SRB_HaId; // ASPI host adapter number
 BYTE SRB_Flags; // ASPI request flags
 DWORD SRB_Hdr_Rsvd; // Reserved
 BYTE SRB_Target; // Target's SCSI ID
 BYTE SRB_Lun; // Target's LUN number
 DWORD SRB_Timeout; // Timeout in half seconds
}
SRB_GetSetTimeouts, *PSRB_GetSetTimeouts;

SRB Fields

SRB_Cmd (Input)
This field must contain SC_GETSET_TIMEOUTS (0x08).

SRB_Status (Output)
SC_GETSET_TIMEOUTS is a synchronous SRB. On return, this field is the same as the
SendASPI32Command return value and is set to SS_COMP, SS_INVALID_HA, SS_NO_DEVICE, or
SS_INVALID_SRB (bad flags, invalid timeout, etc.).

SRB_HaId (Input)
This field specifies which installed host adapter the request is intended for If SRB_DIR_OUT is set in
SRB_Flags then this value may be a wildcard (0xFF) indicating that the SRB_Target/SRB_Lun
combination on ALL host adapters should get new a timeout.

SRB_Flags (Input)
May be set to one and only one of the following two constants:

Symbol Value Description
SRB_DIR_IN 0x08 SRB is being used to retrieve current timeout setting.

Wildcards are not allowed in the ASPI address fields
SRB_DIR_OUT 0x10 SRB is being used to change the current timeout setting.

Wildcards are valid in the ASPI address fields.

SRB_Target (Input)
This field indicates the SCSI ID of the target device. If SRB_DIR_OUT is set in SRB_Flags then this value
may be a wildcard (0xFF) indicating that ALL SCSI IDs of the passed SRB_HaId/SRB_Lun combination
should get a new timeout.

SRB_Lun (Input)
This field indicates the Logical Unit Number (LUN) of the device. If SRB_DIR_OUT is set in
SRB_Flags then this value may be a wildcard (0xFF) indicating that ALL LUNs of the passed
SRB_HaId/SRB_Target combination should get a new timeout.

July 1, 1998 26 Adaptec

SRB_Timeout (Input)
Target's timout in half seconds. If SRB_DIR_OUT then this value holds the new timeout for the specified
target(s). If SRB_DIR_IN then the value is set by ASPI to the current timeout for the specified target. The
timeout can be from 0-108000 (30 hours) with 0 being an easier way of saying "max timeout" (again, 30
hours).

Remarks

Once a timeout is set for a target, that timeout will be used on all SRBs passed to SendASPI32Command with
SC_EXEC_SCSI_CMD. If one of these SRBs actually times out, then the SCSI bus will be reset (this is NOT a
bus device reset, but a full SCSI bus reset). This causes all of the SRBs executing on the bus to be cancelled,
and the miniport will set error codes in the SRBs as appropriate. It is up to the code which originally submitted
these SRBs to retry the commands as necessary (for example, if an ASPI request times out and the bus is reset, a
file system command to another target could be cancelled, and it is up to the file system to retry the command).
In addition, the result placed in the SRB which times out depends on the error codes which the miniport places
in the SRB. In the case of Adaptec controllers, the result code is SS_ABORT. In other miniports, the result may
be SS_ERR with a host adapter status set to HASTAT_TIMEOUT or HASTAT_COMMAND_TIMEOUT, or it may
be some new error result not yet encountered. Suffice it to say that the SRB which times out should return with
an error, and it is up to the higher level applications to perform retries of the SRB and any other SRB which may
have been affected by the associated bus reset.

When using event notification with timeouts, it is important to remember that the HEVENT used in the
SRB_PostProc field has an ENTIRELY SEPERATE timeout associated with it. In other words, the timeout
associated with an event is seperate from the timeout associated with an SRB. If you set a timeout on an SRB
and then set an infinite timeout in WaitForSingleObject on the SRB event, then the SRB will STILL
TIMEOUT and signal completion of the SRB. Conversely, if you set a 30 hour timeout on the SRB and a 5
second timeout on the event, the event will always go signaled before the SRB completes, and no cleanup of the
SRB on the bus will take place.

Examples

The first example illustrates how wildcards work with set timeout. The main point here is that the wildcards are
specific. In other words, setting the HaId to 0xFF does not make SRB_Target/SRB_Lun "don't cares".

HA ID LN Device Affected
00 01 FF All of target 1's luns on host adapter 0.
FF 00 FF All luns on targets with ID 0 on any host adapter.
FF FF 00 Lun 0 of all targets on any host adapter.
FF FF FF All targets on any host adapter with any lun number (everything).

Next is an example in which all LUNs on target 5, host adapter 0 are set to 10 seconds:

SRB_GetSetTimeouts srbGetSetTimeouts;

memset(&srbGetSetTimeouts, 0, sizeof(SRB_GetSetTimeouts));
srbGetSetTimeouts.SRB_Cmd = SC_GETSET_TIMEOUTS
srbGetSetTimeouts.SRB_Flags = SRB_DIR_OUT;
srbGetSetTimeouts.SRB_Target = 0x05;
srbGetSetTimeouts.SRB_Lun = 0xFF;
srbGetSetTimeouts.SRB_Timeout = 10*2;

SendASPI32Command((LPSRB)&srbGetSetTimeouts);
if(srbGetSetTimeouts.SRB_Status != SS_COMP)
{
 // Error setting timeouts. Put error handling code here.
}

July 1, 1998 27 Adaptec

GetASPI32Buffer
GetASPI32Buffer allocates blocks of memory (up to 512KB) which are “safe” for use in ASPI modules.
Under normal circumstances memory buffers from the stack or allocated with VirtualAlloc will be too physically
fragmented to allow a transfer greater than 64KB on bus-mastering host adapters. For those rare instances
where a large transfer is required, GetASPI32Buffer allows a buffer to be allocated which will pass all
operating system requirements for physical continuity.

BOOL GetASPI32Buffer(PASPI32BUFF pab);

Parameters

pab
Pointer to a filled out ASPI32BUFF structure.

typedef struct
{
 LPBYTE AB_BufPointer; // Pointer to the ASPI allocated buffer
 DWORD AB_BufLen; // Length in bytes of the buffer
 DWORD AB_ZeroFill; // Flag set to 1 if buffer should be zeroed
 DWORD AB_Reserved; // Reserved, MUST = 0
}
ASPI32BUFF, *PASPI32BUFF;

AB_BufPointer (Output)
After a successful call (return value TRUE) this field contains the address of the large transfer buffer
which has been allocated for the application.

AB_BufLen (Input)
Set to the size, in bytes, desired for the transfer buffer. This must be less than or equal to 512KB and
should be greater than 64KB (although there are no requirements on the low end).

AB_ZeroFill (Input)
Set this flag to 1 if ASPI should clear the transfer buffer after allocation but before returning to the
caller. Leave the flag set to 0 if the memory can remain uninitialized.

Return Values

This function returns TRUE if it successfully allocates a large transfer buffer, and FALSE otherwise. The caller
should assume that this call can fail, and should allow the code to work with smaller transfer buffers allocated
from VirtualAlloc (if at all possible).

Example

The following example allocates a 128KB buffer for use with ASPI.

ASPI32BUFF ab;

memset(&ab, 0, sizeof(ASPI32BUFF));
ab.AB_BufLen = 131072lu;
ab.AB_ZeroFill = 1;

if(!GetASPI32Buffer(&ab))
{
 // Unable to allocate buffer. Error handling code goes here!
}

July 1, 1998 28 Adaptec

FreeASPI32Buffer
FreeASPI32Buffer releases memory previously allocated by a successful call go GetASPI32Buffer .

BOOL FreeASPI32Buffer(PASPI32BUFF pab);

Parameters

pab
Pointer to a filled out ASPI32BUFF structure.

typedef struct
{
 LPBYTE AB_BufPointer; // Pointer to the ASPI allocated buffer
 DWORD AB_BufLen; // Length in bytes of the buffer
 DWORD AB_ZeroFill; // Reserved, MUST = 0
 DWORD AB_Reserved; // Reserved, MUST = 0
}
ASPI32BUFF, *PASPI32BUFF;

AB_BufPointer (Input)
Pointer to the buffer previously returned from a successful call to GetASPI32Buffer . The address
must match exactly for the free to occur.

AB_BufLen (Input)
Set to the original size, in bytes, of the buffer allocated by a call to GetASPI32Buffer . The size
must match exactly for the free to occur.

Return Values

This function returns TRUE if the memory allocated to the buffer has been released. FALSE is returned if there
is an error freeing the memory or if the passed in AB_BufPointer/AB_BufLen fields don’t match a those of a
previously allocated buffer.

July 1, 1998 29 Adaptec

TranslateASPI32Address
TranslateASPI32Address provides translation between Windows 95 DEVNODEs and ASPI
HA/ID/LUN triples (or vice versa). Because DEVNODEs are associated with WM_DEVICECHANGE
messages, it is possible to use this function to associate ASPI target addresses with Plug and Play events.

Note: This command is not valid for Windows NT, which does not currently have Plug and Play capabilities.

BOOL TranslateASPI32Address(PDWORD pdwPath, PDWORD pdwDEVNODE);

Parameters

pdwPath
Pointer to a ASPI address “path.” The path is simply a packed version of an ASPI address triple. Every
target address in ASPI consists of a host adapter identifier, a SCSI ID, and a SCSI LUN. Each of these
values consists of a BYTE, so an ASPI address “path” is a DWORD encoded as 0x00HHIILL where HH is
the host adapter identifier, II is the SCSI ID, and LL is the SCSI LUN. Note that if II and LL are both 0xFF
then the path represents a host adapter. This is necessary because host adapters have their own
DEVNODEs in the Plug and Play subsystem.

pdwDEVNODE
Pointer to a DWORD which contains a Windows 95 DEVNODE ID. This parameter controls the direction
of translation. If the DWORD contains a 0 (note that this does not mean that pdwDEVNODE is NULL)
then translation is from the ASPI triple to the DEVNODE. If the DEVNODE is non-zero then translation is
from the DEVNODE to an ASPI triple.

Return Values

TRUE if there is a successful translation. FALSE is returned if the parameters are invalid or if there is no
translation between ASPI path and Windows 95 DEVNODE.

Remarks

In order for this scheme to work properly, applications should pay attention to WM_DEVICECHANGE
messages which utilize DBT_DEVTYP_DEVNODE device change data. The device change data type can be
detected by checking the dcbh_devicetype field in the DEV_BROADCAST_HEADER associated with device
change events. Review the Plug and Play documentation in Win32 for more information.

July 1, 1998 30 Adaptec

Example

The function below checks broadcast data from a WM_DEVICECHANGE message to see if the device change
message is related to an ASPI target (but not host adapter).

BOOL CheckForASPITargetBroadcast(PDEV_BROADCAST_HDR pHeader)
{
 BOOL bStatus;
 DWORD dwTargetPath;
 DWORD dwDEVNODE;
 PDEV_BROADCAST_DEVNODE pDevnodeData

 if(pHeader->dbch_devicetype != DBT_DEVTYP_DEVNODE)
 {
 return FALSE;
 }

 pDevnodeData = (PDEV_BROADCAST_DEVNODE)pHeader;
 dwDEVNODE = pDevnodeData->dbcd_devnode;

 bStatus = TranslateASPI32Address(&dwTargetPath, &dwDEVNODE);
 if(!bStatus || ((dwTargetPath & 0xFFFFlu) == 0xFFFFlu))
 {
 return FALSE;
 }

 return TRUE;
}

July 1, 1998 31 Adaptec

Waiting for Completion
There are two types of SRBs sent to SendASPI32Command: synchronous and asynchronous. Synchronous
SRBs are always complete when the call to SendASPI32Command returns. Asynchronous SRBs, however,
may or may not be complete upon return from the SendASPI32Command call.

When called with an asynchronous SRB, the status return from SendASPI32Command should be checked for
a value of SS_PENDING. If the status code is not SS_PENDING then the SRB is complete and it is safe to
look at its status codes, etc. If SS_PENDING is returned then the SRB is still under the control of ASPI, and the
caller needs to wait for the SRB to complete before doing anything else with that SRB.

There are three ways of being notified that an asynchronous SRB has completed. The first and recommended
method uses event notification. The second method uses posting (a callback), and the third method uses polling.
All three completion methods are illustrated below using a simple INQUIRY command to host adapter #0, SCSI
ID #5, LUN #0.

Event Notification

Event notification is an ideal mechanism for notifying ASPI clients of the completion of an ASPI request. ASPI
clients may efficiently block on this event until completion. Upon completion of a request, the ASPI for Win32
manager will set the event to the signaled state. The ASPI client is responsible for making sure that the event is
a manual-reset style event which is not in a signaled state when an ASPI request is submitted.

BYTE byInquiry[32];
DWORD dwASPIStatus;
HANDLE heventSRB;
SRB_ExecSCSICmd srbExec;

heventSRB = CreateEvent(NULL, TRUE, FALSE, NULL);
if(!heventSRB)
{
 // Couldn't get manual reset event, put error handling code here!
}

memset(&srbExec, 0, sizeof(SRB_ExecSCSICmd));
srbExec.SRB_Cmd = SC_EXEC_SCSI_CMD;
srbExec.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
srbExec.SRB_Target = 5;
srbExec.SRB_BufLen = 32;
srbExec.SRB_BufPointer = byInquiry;
srbExec.SRB_SenseLen = SENSE_LEN;
srbExec.SRB_CDBLen = 6;
srbExec.SRB_PostProc = (LPVOID)heventSRB;
srbExec.CDBByte[0] = SCSI_INQUIRY;
srbExec.CDBByte[4] = 32;

ResetEvent(hevenSRB);
dwASPIStatus = SendASPI32Command((LPSRB)&srbExec);
if(dwASPIStatus == SS_PENDING)
{
 WaitForSingleObject(heventSRB, INFINITE);
}

if(srbExec.SRB_Status != SS_COMP)
{
 // Error processing the SRB, put error handling code here.
}

July 1, 1998 32 Adaptec

Posting

Posting (or callbacks) may be used to receive notification that a SCSI request has completed. When posting is
used, ASPI for Win32 posts completion by passing control to a callback function. If you send an ASPI request
with posting enabled, the callback procedure will always be called. The post or callback routine is called as a
standard C function. The caller (in this case, the ASPI manager) cleans up the stack. The prototype for the
callback is below in the sample.

BYTE byInquiry[32];
SRB_ExecSCSICmd srbExec;

memset(&srbExec, 0, sizeof(SRB_ExecSCSICmd));
srbExec.SRB_Cmd = SC_EXEC_SCSI_CMD;
srbExec.SRB_Flags = SRB_DIR_IN | SRB_POSTING;
srbExec.SRB_Target = 5;
srbExec.SRB_BufLen = 32;
srbExec.SRB_BufPointer = byInquiry;
srbExec.SRB_SenseLen = SENSE_LEN;
srbExec.SRB_CDBLen = 6;
srbExec.SRB_PostProc = ASPIInquiryCallback;
srbExec.CDBByte[0] = SCSI_INQUIRY;
srbExec.CDBByte[4] = 32;

SendASPI32Command((LPSRB)&srbExec);

. . .

/**
*** The code above is a separate thread of execution from
*** the code below which handles the inquiry callback. Note that
*** the callback usually signals the main thread of execution that
*** the an SRB it submitted has completed. In this case we aren’t
*** doing anything but checking for errors.
**/

VOID ASPIInquiryCallback(SRB_ExecSCSICmd psrbExec)
{
 if(psrbExec->SRB_Status != SS_COMP)
 {
 // Error processing the SRB, put error handling code here.
 }
}

July 1, 1998 33 Adaptec

Polling

Polling is another method of determining SCSI request completion. This method is not recommended because
of the large number of CPU cycles consumed while checking the status byte. After the command is sent and
ASPI for Win32 returns control back to the calling application, you can then poll the status byte waiting for the
command to complete. Note that this completion method is the only one to “break” the rule of not touching an
SRBs data until after completion. With polling you must look at the SRB_Status byte in order to tell when
the SRB is complete. You are still prohibited from accessing any other fields of the SRB.

BYTE byInquiry[32];
SRB_ExecSCSICmd srbExec;

memset(&srbExec, 0, sizeof(SRB_ExecSCSICmd));
srbExec.SRB_Cmd = SC_EXEC_SCSI_CMD;
srbExec.SRB_Flags = SRB_DIR_IN;
srbExec.SRB_Target = 5;
srbExec.SRB_BufLen = 32;
srbExec.SRB_BufPointer = byInquiry;
srbExec.SRB_SenseLen = SENSE_LEN;
srbExec.SRB_CDBLen = 6;
srbExec.CDBByte[0] = SCSI_INQUIRY;
srbExec.CDBByte[4] = 32;

SendASPI32Command((LPSRB)&srbExec);
while(srbExec.SRB_Status == SS_PENDING);

if(srbExec.SRB_Status != SS_COMP)
{
 // Error processing the SRB, put error handling code here.
}

July 1, 1998 34 Adaptec

ASPI for Win32 Errors
Each of these errors can be returned by ASPI for Win32 on either Windows 95 or Windows NT. The ASPI
header files included with the ASPI SDK may have codes defined which cannot be returned by an actual ASPI
implementation. These codes are in the header file to serve as placeholders for other ASPI managers. They are
not documented in this table.

SS_PENDING 0x00 Returned from SendASPI32Command on
SC_EXEC_SCSI_CMD and SC_RESET_DEV SRBs to
indicate that the command is in progress. Use polling,
posting, or event-notification (preferred) to wait for
completion.

SS_COMP 0x01 Either returned from SendASPI32Command, or set in the
SRB_Status field of the SRB header. This value indicates
successful completion of an SRB.

SS_ABORTED 0x02 The current SRB was aborted either by the operating system
directly (for example, a third party does a hard reset of the
SCSI bus) or through a SC_ABORT_SRB.

SS_ERR 0x04 Returned on SC_EXEC_SCSI_CMD calls if there is a host
adapter, SCSI bus, or SCSI target error. It indicates that the
caller should examine SRB_TargStat and SRB_HaStat
for additional information.

SS_INVALID_CMD 0x80 The SRB_Cmd passed in an SRB is invalid.
SS_INVALID_HA 0x81 The SRB_HaId passed in an SRB is invalid. Call

GetASPI32SupportInfo to determine the valid range of
host adapters identifiers.

SS_NO_DEVICE 0x82 Returned from calls to SendASPI32Command, or set in the
SRB_Status field of the SRB header. This value indicates
that there is no target present at the SCSI address indicated in
the SRB. Note that this is not a selection timeout. The
operating system keeps a table of known devices and does
not permit commands to “non-existent” devices. This code
could be returned if an operating system rescan of the SCSI
bus is required to detect a newly powered on device.

SS_INVALID_SRB 0xE0 An SRB sent to ASPI had a valid address and a valid
command byte, but it was somehow faulty in another way.
The exact cause of the failure is dependent on the SRB type.
For example, an SC_EXEC_SCSI_CMD SRB may fail if an
invalid flag is set in the SRB_Flags word, if a buffer length
is specified but there is a NULL buffer pointer, or if ASPI
detects an SRB has been reused. In any case, the code
creating the SRB is faulty and needs to be analyzed.

SS_BUFFER_ALIGN 0xE1 SRB data buffers must meet alignment requirements as
returned by SC_HA_INQUIRY SRBs. If a transfer buffer
does not meet those requirements, this error is returned.

Symbol Value Description

July 1, 1998 35 Adaptec

SS_ILLEGAL_MODE 0xE2 An attempt was made to start ASPI for Win32 from Win32s.
ASPI for Win32 is a pure Win32 component and cannot be
run under the Windows 3.1x Win32 subsystem.

SS_NO_ASPI 0xE3 WNASPI32.DLL is present on the system, but it could not
find it’s helper driver. Under Windows 95 APIX.VXD is the
helper driver, and under Windows NT ASPI32.SYS is the
helper driver. Either the ASPI installation is invalid, or there
are resource conflicts preventing ASPI from starting.

SS_FAILED_INIT 0xE4 A general internal failure has occurred within ASPI. This
can occur during initialization or at run-time. This error
should only occur if basic Windows operating services begin
to fail, in which case the whole system is unstable.

SS_ASPI_IS_BUSY 0xE5 Returned either from SendASPI32Command, or set in the
SRB_Status field of the SRB header. This code indicates
that ASPI did not have enough resources to complete the
requested SRB at the present time. This is different from
SS_INSUFFICIENT_RESOURCES in that it is usually a
temporal condition, and the failed SRB may be retried at a
later time.

SS_BUFFER_TO_BIG 0xE6 Returned in the SRB_Status field of a failing SRB. The
code indicates that the buffer associated with the SRB did not
meet internal operating system constraints for a valid transfer
buffer. For example, a buffer >64KB on a bus-mastering
controller will usually fail with this error because it is not
physically contiguous enough to be described by a
scatter/gather list.

SS_MISMATCHED_COMPONENTS 0xE7ASPI for Win32 consists of three components under
Windows 95: WNASPI32.DLL, APIX.VXD, and
ASPIENUM.VXD. It consists of two components under
Windows NT: WNASPI32.DLL, ASPI32.SYS. Each of
these components has a version number, and all the version
numbers on a particular platform must agree for ASPI to
function. This error will only occur if the installation has
been corrupted, and components with different version
numbers have been installed on the system. The only fix for
this is to remove all of the ASPI components for that
operating system, and then reinstall a full, consistent set of
ASPI drivers.

SS_NO_ADAPTERS 0xE8 Returned from GetASPI32SupportInfo if ASPI has
initialized successfully, but there are no host adapters on the
system. It is still possible that an adapter may become active
through Plug and Play, so a lack of manageable host adapter
is no longer considered an error as it was in previous versions
of ASPI.

SS_INSUFFICIENT_RESOURCES 0xE9 The error occurs only during initialization if there are not
enough system resources (memory, event handles, critical
sections, etc.) to fully initialize ASPI. If this error occurs it is
likely that the system is critically low on memory.

