
A/UX Development Tools

"® Final Draft
Developer Technical Publications
© Apple Computer, Inc. 1991

© 1991, Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy of
the software. The same proprietary
and copyright notices must be affixed
to any permitted copies as were
affixed to the original. This exception
does not allow copies to be made for
others, whether or not sold, but all of
the material purchased (with all
backup copies) may be sold, given, or
loaned to another person. Under the
law, copying includes translating into
another language or format. You may
use the software on any computer
owned by you, but extra copies
cannot be made for this purpose.

Printed in the United States of
America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014--0299
408-996-1010

APDA, Apple, the Apple logo,
I.aserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

ITC Garamond and ITC Zapf Dingbats
are registered trademarks of
International Typeface Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

PostScript is a registered trademark,
and Illustrator is a trademark, of
Adobe Systems Incorporated.

II© AT&T, Inc., 1988

VAX and PDP are trademarks
of Digital Equipment Corporation.

Motorola is a trademark of
Motorola, Inc.

UNIX is a registered trademark of
UNIX System laboratories, Inc.

Simultaneously published in the
United States and Canada.

12/17/90 DTP Soft ©

Add applicable Apple registered
trademarks (®'s) to the sixth
paragraph

If your book mentions Apple
trademarks (™s), add a credit
paragraph after the sixth
paragraph: "Name and Name are
trademarks of Apple Computer,
Inc."

llMITED WARRANTY ON MEDIA
AND REPIACEMENT

If you discover physical defects in
the manual or in the media on
which a software product is
distributed, APDA will replace the
media or manual at no charge to
you provided you return the item co
be replaced with proof of purchase
to APDA.

ALL IMPLIED WARRANT!~ ON
THIS MANUAL, INCUJDING
IMPUED W~ OF
MERCHANfABJIIIY AND
FITNF.SS FOR A PARTICUIAR
P~E, ARE UMITED IN
DURATIONTONINETY(90)DAYS
FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKFS NO
WARRANTY OR
REPRESENTATION, EITHER

----- ---- - - - ------------·

EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY,ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICUIAR PURPOSE. AS
A ~T, THIS MANUAL IS SOLD
"AS IS," AND YOU, THE
PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE
UABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
~TING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE
EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRIITEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized co make any
modification, extension, or addition
to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty gives
you specific legal rights, and you
may also have other rights which
vary from state to state.

_________ ,,

Contents

About This Book / ix
What this manual contains / x
Audience I xi
Conventions used in this manual / xi

Significant fonts / xi
Terminology I xii
Aids to understanding / xiii

Other reference material / xiii
For more information / xv

Chapter 1 A/UX Programming Environment / 1-1
A/UX as a UNIX operating system / 1-12
A/UX as a Macintosh operating system / 1-12
A/UX Developer's Tools I 1-12
Installing A/UX Developer's Tools I 1-13

Chapter 2 Hybrid Applications / 2-1

Types of hybrid applications / 2-2
UNIX hybrid applications / 2-2
Macintosh hybrid applications / 2-4

A/UX file systems I 2-5
A/UX system call library / 2-6

A/UX system header files / 2-6
A/UX system calls and blocking / 2-7
listing of A/UX system calls / 2-8
Description of A/UX system calls / 2-10
Additional library routines / 2-18

auxfork_pipe / 2-18
auxsystem I 2-20
auxfgets / 2-20

Table of Contents iii
nnn-nnnn

HyperCard XCMDs and XFCNs / 2-21
A sample Macintosh hybrid application using HyperCard / 2-21

The HyperCard XFCNs / 2-21
The XFCN forkpipexfcn / 2-22
The XFCNs fgetsxfcn and fgetfxfcn / 2-23
The XFCN writexfcn / 2-26
The XFCN cleanupxfcn / 2-27

The HyperTalk scripts / 2-27
The script for card "headers" / 2-27
The script for field "one" / 2-29
The script for bunon "Delete" / 2-30
The script for bunon "Return" I 2-31

Summary / 2-31

Chapter 3 Commando / 3-1
Introduction / 3-2

Macintosh dialog boxes / 3-3
Commando dialog boxes / 3-3

The Commando script language / 3-5
Dialog box layout I 3-5
Layout examples / 3-8

Row example / 3-8
Multiple row example / 3-10
Column example I 3-11
Nested dialog box example / 3-13

Control examples I 3-15
Checkbox I 3-15
Radio buttons I 3-16
Text boxes I 3-18
Text I 3-20
Bunons / 3-20

Dependencies / 3-24
Boxes I 3-28
Leniencies / 3-28
Keywords I 3-28

Creating Commando dialogs I 3-31
Invoking Commando Dialogs / 3-31
Writing Commando dialogs / 3-32
Testing Commando dialogs . I 3-32

iv A/UX Development Tools
nnn-nnnn

,,.---.

Compiling Commando dialogs / 3-32
Dialog design guidelines I 3-33

Dialog layout guidelines I 3-33
Dialog aesthetics / 3-34
Descriptive information / 3-34

Chapter 4 dbx Reference / 4-1
Using dbx / 4-2

dbx syntax / 4-3
Example / 4-4

Command list / 4-4
Execution and tracing commands / 4-5
Printing variables and expressions I 4-7
Accessing source files I 4-9
Command aliases and variables / 4-10
Machine-level commands / 4-12
Warnings / 4-13

Chapter 5 c89 Command Syntax / 5-1
Command syntax / 2
Default behavior / 2
Feature test macros / 3
Options / 3

Options recognized by c89 and passed to as / 6
Options recognized by c89 and passed to Id / 6
Options recognized by c89 and passed to the preprocessor / 7
Intermediate output / 8

Chapter 6 as Reference / 6-1
Warnings / 6-2

Comparison instructions / 6-2
Case sensitivity I 6-2
Overloading of opcodes / 6-3

Using as / 6-3
General syntax rules / 6-4

Format of assembly language code / 6-5
Comments / 6-5

Table of Contents v
nnn-nnnn

Identifiers / 6-6
Constants / 6-7
Other syntactic details / 6-8

Segments, location counters, and labels / 6-9
Segments I 6-9
Location counters and labels / 6-10

Types I 6-10
Expressions I 6-11
Pseudo-operations I 6-12

Data initialization operations / 6-12
Symbol definition operations / 6-14
Location counter control operations / 6-15
Symbolic debugging operations / 6-16
Switch table operation / 6-18

Span-dependent optimization / 6-19
Address modes I 6-20

Address mode syntax / 6-20
Effective address modes / 6-22

Machine instructions / 6-24
Instructions for the MC68881 / 6-34
Instructions for the MC68851 / 6-43

Chapter 7 The Id loader / 7-1
Using Id / 7-2

Loader concepts / 7-3
Options I 7-6

The Id command language / 7-8
Expressions / 7-8
Assignment statements / 7-10
Specifying a memory configuration / 7-11
Region directives / 7-12
Section definition directives / 7-13

File specifications / 7-13
Loading a section at a specified address / 7-14
Aligning an output section / 7-15
Creating holes within output sections / 7-18
Creating and defining symbols at loading time / 7-19
Allocating a section into named memory / 7-20
Initialized section holes or .bss sections / 7-20

vi A/UX Development Tools
nnn-nnnn

Glossary / G-1

Index / 1-1

Notes and special considerations / 7-22
Using archive libraries / 7-22
Dealing with holes in physical memory / 7-24
Allocation algorithm / 7-25
Incremental loading / 7-26
DSECT, COPY, and NOLOAD sections / 7-27
Output file blocking / 7-28
Nonrelocatable input files / 7-29
The -ild option / 7-29

Error messages / 7-29
Corrupt input files / 7-30
Errors during output / 7-31
Internal errors / 7-31
Allocation errors / 7-32
Misuse of loader directives / 7-33
Misuse of expressions / 7-34
Misuse of options / 7-34
Space constraints / 7-35
Miscellaneous errors / 7-36

Syntax diagram for input directives / 7-37

------- -

Table of Contents vii
nnn-nnnn

Figures and tables

Table 1-1
Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7

Figure 2-1
Figure 2-2
Table 2-1
Table 2-2

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Listing 3-1
Figure 3-5
Listing 3-2
Figure 3-6
Listing 3-3
Figure 3-7
Listing 3-4
Figure 3-8
Listing 3-5
Figure 3-9
Listing 3-6
Figure 3-10
Listing 3-7
Figure 3-11
Listing 3-8
Figure 3-12
Figure 3-13

Installation sizes / 1-5
Installation dialog box / 1-6
Installation dialog box / 1-6
Installation in process message / 1-7
Installation complete message / 1-7
Another Installation dialog box / 1-8
Installation complete dialog / 1-8
Save Worksheet dialog box I 1-8

A/UX memory map / 2-3
A/UX file systems / 2-5
Input/output system calls / 2-8
Utilitysystem calls / 2-9

Schematic dialog box I 3-3
Commando dialog box for the UNIX command lpr / 3-4
Commando dialog box for the UNIX command tar / 3-5
Dialog box layout example / 3-6
Dialog box layout example script / 3-7
Single row dialog box / 3-8
Single row dialog script / 3-8
Multiple row dialog box / 3-10
Multiple row dialog script / 3-11
Multiple column dialog box / 3-12
Multiple column dialog script / 3-12
Further dialog example / 3-14
Further dialog script / 3-15
Checkbox example dialog I 3-16
Checkbox example script / 3-16
Radio bunon example dialog I 3-17
Radio button example script / 3-17
Text box example dialog / 3-18
Text box example script / 3-20
Button example / 3-21
Button example / 3-21

viii A/UX Development Tools
nnn-nnnn

Figure 3-14 Button example / 3-22
Figure 3-15 Button example / 3-22
Table 3-1 File dialog keywords / 3-22
Listing 3-9 Button Example script / 3-24
Figure 3-16 Dependencies example / 3-25
Figure 3-17 Dependencies example / 3-25
Listing 3-10 Dependencies example script / 3-27
Table 3-2 Commando keyword reference: by function / 3-28
Table 3-3 Commando keyword reference: alphabetic / 3-29

Table 5-1
Table 5-2
Table 5-3
Table 5--4
Table 5-5
Table 5--6

Table 6-1
Table 6-2
Table 6-3
Table 6--4
Figure 6-1
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 6-14

Table 7-1
Table 7-2
Table 7-3

Extension conventions / 5-2
Options executed by c89 / 5--4
Options passed to as / 5-6
Options passed to Id / 5-7
Options passed to the preprocessor / 5-7
Intermediate output options / 5-8

Options to as / 6-3
Predefined MC68020 registers / 6
Additional registers for MC68030 / 6-7
Special character constants / 6-8
Bitfield concatenation / 6-14
Assembler span-dependent optimizations / 6-20
Effective address modes / 6-22
MC68020 instruction formats / 6-26
Non-IEEE condition codes / 6-35
IEEE condition codes / 6-35
Constants in MC68881 ROM / 6-36
MC68881 instruction formats / 6-38
PMMU condition codes / 6-43
PMMU condition codes / 6-43
MC68851 instruction formats / 6--44

Id options / 7--6
Precedence of operators / 7-9
Directive expansion / 7-38

Table of Contents ix
nnn-nnnn

-

About This Book

This manual describes the A/UX® Developer's Tools, a collection of
programs and utilities designed to help you create A/UX applications. It
gives you the information you need to write applications and tools for
the Apple® A/UX operating system. It assumes that you already know the
C programming language _and are familiar with the application
development process .

ix

What this manual contains

This manual contains these sections :

■ This Preface describes the manual and directs you to other reference books with
information about the C language and the Macintosh® and A/UX programming
environments.

■ Chapter 1, "A/UX Programming Environment," introduces the various environments
your applications run in and discusses the tools available for use within those
environments.

■ Chapter 2, "Hybrid Applications," describes the characteristics of applications
designed to take advantage of the strengths of both the A/UX and Macintosh features.

■ Chapter 3, "Commando," documents how to create a Macintosh front-end for existing
UNIX® applications without having to alter your source code.

■ Chapter 4, "ctbx Reference" discusses how to use the debugger provided with A/UX
Developer's Tools.

■ Chapter 5, "ca 9 Command Syntax" is an overview of the command syntax of the
compiler delivered with A/UX Developer's Tools .

■ Chapter 6, "as Reference" discusses the features of the assembler delivered with A/UX
Developer's Tools.

■ Chapter 7, "The ld Loader'' covers the loader provided with A/UX Developer's Tools.

x A/UX Development Tools

----....

--

Audience

This guide was written for three classes of program developers:

1. Those who have used C to create UNIX applications and want to add to the
functionality of these applications by making calls to the Macintosh Toolbox
creating, in effect, hybrid applications. This requires a working knowledge of
Macintosh programming techniques. Chapters 1, 2, and 4-7 will be of most use to this
group.

2. Those who integrate A/UX computers into already-existing networks and who want to
take advantages of the powerful features inherent in A/UX. Those who simply want to
add Macintosh front-ends to their programs without having to write new source code
will find Chapter 3 of the most interest. Those wanting to call A/UX functions from
Macintosh applications such as HyperCard will find Chapters 1, 2, and 4 of most use.

3. Developers who have created Macintosh applications and want to create specific
device drivers to run under A/UX. This requires a detailed knowledge of UNIX
programming techniques. Chapters 1, 2, and 4-7 will be of most use to this group.

Developers wishing to create applications specifically for the Macintosh Operating
System may prefer to use the Macintosh Programmer's Workshop (MPW®), which is
included in A/UX Developer's Tools. MPW contains a number of development tools
specific to that environment.

Conventions ~ in this manual

This manual follows certain conventions regarding presentation of information. Words or
terms that require special emphasis appear in specific fonts within the text. The following
sections explain the conventions used in this manual.

Significant fonts

Code examples or words that might appear on your screen appear in Courier font. For
example,

i = i + 1

The text shows i i + 1 in Co urier typeface to indicate that it is sample code.

Preface xi

Words that you must replace with a value appropriate to a particular set of circumstances
appear in italics. Using the example just described, a code sample might look like

i = i + constant

You would type in whatever value you wanted constant to be-for example,

i = i + 11091

Optional expressions are generally enclosed in square brackets. For example,

[expression]

indicates an optional expression.

New terms appear in boldface and are defined in the glossary of the manual.

Terminology

In A/UX manuals, a certain term can represent a specific set of actions. For example, the
word Enter indicates that you type in an entry and press the RETURN key. If you were to
see

Enter the following command: whoarni

you would type whoarni and press the RETURN key. The system would then respond by
identifying your login name.

Here is a list of common terms and their corresponding actions.

Term Action

Enter Type in the entry and press the RETURN key.

Press Press a single letter or key without pressing the RETURN key.

Type Type in the letter or letters without pressing the RETURN key.

• Click Press and then immediately release the mouse button.

Select Position the pointer on an item and click the mouse button.

Drag Position the pointer on an icon, then press and hold down the mouse
button while moving the mouse. Release the mouse button when you
reach the desired position.

xii A/UX Development Tools

-

Choose Activate a command title in the menu bar. While holding down the mouse
button, drag the pointer to a command name in the menu and then
release the mouse bunon. An example is to drag the File menu down until
the command name Open appears highlighted and then release the mouse
button.

Aids to understanding

Look for these visual cues throughout the manual:

• Warning Warnings like this indicate potential problems. ...

6. Important Text set off in this manner presents important information. ec.

♦ Note: Text set off in this manner presents notes, reminders, and hints .

Other reference material

You'll need to be familiar with these additional reference materials:

■ The C Programming Language. (Second edition. Brian W. Kernighan and Dennis M.
Ritchie . Prentice-Hall, 1988.) The standard reference book for the C language,
rewritten for the then-proposed draft ANSI C.

■ AIUX Toolbox: Macintosh ROM Interface. (Apple Computer, Inc. , 1989.) Describes how
to access and use the Macintosh ROM routines Available under A/UX.

■ AIUX Programming Languages and Tools, Volumes 1 & 2. (Apple Computer, Inc. , 1989.)
Describes in detail the various tools available for program development under A/UX
Version 2.0.

■ AIUX Programmer's Reference, Sections 2 and 3 (A-L). (Apple Computer, Inc. , 1989.)
Describes in detail the various system calls and subroutines available under A/UX 2.0.

■ AIUX Programmer's Reference, Sections 3 (~Z), 4, and 5. (Apple Computer, Inc. ,
1989.) Describes in detail the various subroutines, file formats, and miscellaneous
facilities available under A/UX 2.0.

■ AIUX ANSI C Reference. (Apple Computer, Inc., 1991 .) Describes the implementation of
Apple's ANSI-compliant C compiler.

Preface xiii

■ AIUX Porting Guide. (Apple Computer, Inc., 1991.) Contains information for porting
applications to run on A/UX. Describes the environment, compiler, and tools used
under A/UX.

The following reference materials are included with A/UX Developer's Tools:

■ Macintosh Programmer's Workshop 3.0 Reference. (Apple Computer, Inc., 1988.)
Describes the Macintosh Programmer's Workshop, another development environment
from Apple, including the editor, linker, and other important tools.

■ MacsBug Reference. (Apple Computer, Inc., 1988.) Describes the MacsBug object-level
debugger.

■ SADE Reference. (Apple Computer, Inc., 1988.) Describes the SADE® source-level
debugger.

• ResEdit Reference. (Apple Computer, Inc., 1988.) Describes the ResEdit™ resource
editor.

You may also want to be familiar with these additional reference materials:

■ Human Interface Guidelines: 7he Apple Desktop Interface. (Addison Wesley. 1987.)
Describes the guidelines used to provide Macintosh computers a consistent interface.

■ 7he C Programming Language. (First edition. Brian W. Kernighan and Dennis M.
Ritchie. Prentice-Hall, 1978.) The standard reference book for the C language as
originally defined. (The language it defines is called K&R C.)

■ C: A Reference Manual. (Second edition. Samuel P. Harbison and Guy L. Steele, Jr.
Prentice-Hall, 1987.) A standard reference book for the C language with the AT&T
extensions used in most UNIX® operating system environments. The second edition
contains a chapter on the then-proposed ANSI C standard.

■ American National Standard for Information Syst~Programming Language C.
(ANSI, 1989; document X3.159-1989.) This standard and its accompanying rationale
define ANSI C, codifying many language extensions added since 1978. This book is
herein referred to as the ANSI C standard. The language it describes is referred to as
ANSI C.

■ Motorola MC68020 32-Bit Microprocessor User's Manual. (Second edition. Prentice­
Hall, 1985.) Describes the MC68020 processor in detail for hardware and software
engineers.

■ MC68030 Enhanced 32-Bit Microprocessor User's Manual (Second Edition ,
Englewood Cliffs, N. J.: Prentice-Hall, 1989). Describes the MC68030 processor in
detail.

■ MC68881 Floating-Point Coprocessor User's Manual. (Motorola, Inc., 1985.) Describes
the instruction set and addressing conventions used by the MC68881 floating-point
coprocessor, which is used in the Macintosh II.

xiv A/UX Development Tools

■ MC68851 Paged Memory Management Unit User's Manual, (Motorola, Inc., 1985.)
Describes the instruction set and addressing conventions used by the MC68851 PMMU.

For more infonnation

APDA ® (Apple Programmers and Developers Association) offers worldwide access to a broad range
of programming products, resources, and information for anyone developing on Apple platforms.
You'll find the most current versions of Apple and third-party development tools, debuggers,
compilers, languages, and technical references for all Apple platforms. To establish an APDA account,
obtain additional ordering information, or find out about site licensing and developer training
programs, please contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299

800-282-2732 (United States)
800-637-0029 (Canada)
408-562-3910 (International)
Fax: 1-408-562-3971
Telex: 171-576
AppleLink® address: APDA

If you provide commercial products and services, please call 408-974-4897 for information on the
developer support programs available from Apple.

Preface xv

Chapter 1 A/UX Programming Environment

This chapter describes the A/UX programming environment, and explains
how the A/UX Developer's Tools enhance your ability to program
applications for A/UX. The A/UX Developers' Tools combines the power
of the UNIX® development environment with many features found in the
Macintosh development environment.

1-1

A/UX as a UNIX operating system

A/UX fully complies with the System V Interface Definition (SVID) of the UNIX operating
system. In addition, it meets the Federal Information Processing Standard (FIPS)-151 and
IEEE 1003 Portable Operating System Interface for Computer Environments Full Use
Standard (POSIX FUS)-1988. This adherence to standards provides developers with the
knowledge that their compliant applications will usually run under A/UX with a simple
recompile. The many features incorporated from Berkeley Software Distribution (BSD)
4.3 increase the ease of porting applications based on the Berkeley UNIX operating
systems.

This combination of standards adherence and features extension thus gives you all the
power inherent in a UNIX operating syste~and preserves your investment if you've
already developed UNIX application code. Indeed, the portability of code across the
UNIX platforms is probably one of the reasons you chose UNIX in the first place.

A/UX as a Macintosh operating system

A/UX applications have access to the A/UX Toolbox, which allows A/UX applications to
take advantage of Macintosh interface features such as a windowed environment and
dialog box-based control of application parameters. A/UX Toolbox routines are
particularly useful when you want to take advantage of the ease-of-use of the Macintosh
desktop metaphor, but have a large amount of UNIX application code already written.
Studies show that the Macintosh graphical interface is easier to learn than command-line
interfaces. After users become accustomed to this interface, they view using a command
line interface as less "elegant." The addition of Toolbox features can help make your
application more accessible to the naive UNIX user. This, combined with the normal
Macintosh applications that run under A/UX, can make your computing environment
seamless, and thus more powerful and efficient.

A/UX Developer's Tools

The new set of tools provided with A/UX Developer's Tools include several new and
enhanced tools for program development and porting in the A/UX environment

1-2 A/UX Development Tools

■ ca 9, an ANSI-compliant C compiler. (new versions of the assembler and loader are
included as well).

■ A/UX system call libraries, a set of libraries that can be used to develop hybrid
applications.

■ dbx, a source-level debugger for A/UX and UNIX applications.

■ Xl 1R4, an implementation of the X Window System client architecture.

Additionally, A/UX Developer's Tools contains the following previously-released
Macintosh development tools:

■ Macintosh Programmer's Workshop (MPW™), Apple's fully integrated development
environment, optimized for developing Macintosh applications. If your interest is
primarily in these kinds of applications , please consult the Macintosh Programmer's
Workshop 3.1 Reference included with A/UX Developer's Tools.

■ MacsBug, an object-level debugger.

■ ResEdit, a resource editor.

■ SADE, a source-level debugger.

Installing A/UX Developer's Tools

The A/UX Developer's Tools software is contained on a 3 compact disc (CD) set. You must
have a SCSI-based CD-ROM drive attached to your Macintosh system. Verify that you
have the following CDs:

■ A/UX Developer's Tools

■ Macintosh Programmer's Workshop

■ X Window System

Installation procedure

A/UX Developer's Tools contains an automated installation program. After you select the
components you want to install, an MPW application called Installer takes care of
transferring all files for you. As with any Macintosh application, you can press COMMAND­
period to stop the installation at any time.

Chapter 1 A/UX Programming Environment 1-3

The Installer checks that you have enough disk space to complete the instailation, then
begins transferring the software. If there is not enough free space on your disk, the system
warns you with an "Insufficient room to install" alert. Select Quit from the File menu of the
Installer to,stop the installation. You will need to remove some files from your disk to
complete the installation.

Once the installer begins installing the software, it displays its progress in a window called
Worksheet. Simultaneously it creates a file (named errorList) in the Installation Folder
to track in detail any errors that occurred during the installation process. Once the
installation has successfully completed, this file can be removed.

If the Installer needs to install software located on a separate CD, it ejects the current CD
and prompts you for the required CD.

The general steps to install the software are:

1 . Boot your A/UX system.

2. Drag the Installation folder from the A/UX Developer's Tools CD to your hard disk.

3. Launch the Installer application.

4. Select options to install the programs you want.

5. Quit the Installer.

6 Important In order for A/UX to be able to access the CD drive to install the
software, the drive must be initialized. This is accomplished by
booting the Macintosh Operating System from a system folder
containing the CD driver. Therefore, you must start your Macintosh
from a system folder that contains the driver for your CD drive. For
many systems, this is the MacPartition volume. t::.

Preparing your system

1. Verify your CD drive is connected to your Macintosh and is powered on. Verify that
there is not a CD in the drive.

2. Consult Table 1-1 to verify there is enough free space on your disk to install the desired
software. This step is only needed for planning purposes; if there is not enough room
to install an option, the installer reports this and stops.

1-4 A/UX Development Tools

■ Table 1-1 Installation sizes

Option Space required

A/UX System Calls 830 KB

c89 1,870 KB

dbx ??????? KB

A/UXC++ 1,170 KB

Xl1R4 6,740 KB

MPW 8,930 KB

MPW C++ 980 KB

MacsBug 310KB

ResEdit 770 KB

SADE 1,130 KB

3. Start your Macintosh computer.

4. Boot the A/UX operating system.

5. Log on to your system as the root user.

6. Insert the A/UX Developer's Tools CD into your CD drive. The CD icon appears on your
desktop and the disc's window opens on your desktop.

7. Drag the Installation Folder to any volume of your hard disk. The installation folder
occupies about 800K of disk space, and must copied to a writable media to complete
the installation.

8. Open the Installation Folder icon located on your hard disk. To avoid confusion, you
may want to close the A/UX Developer's Tools window.

• Warning The Installer application overwrites files on your hard disk with
compatible versions. Before running the application you may want to
back up the programs /bin/as and /bin/ld and the directories
/lib, /usr/lib and /usr/include •

Running the Installer

1. Open the Installer icon. A dialog box appears giving you choices of the various options
you can install (see Figure 1-1).

Chapter 1 A/UX Programming Environment 1-5

■ Figure 1-1 Installation dialog box

-Install Options

! M■cintesll Teals ! I Uai■ Teals
l O MPW 3.2b6 ! ! 0 R/UH RNSI C Compiler
i O MPW C++ 3.lb4 i ! OR/UH C++ Language System
i O MetcsBug 6.2 ii □ : : dbH Symbolic Debugger
l O SRO[1.385 i l

: :

1 □ ResEdlt 2.0 ~ i

i O R/UH system Call Llbnry ! l OH Window System HI 1R4

It St~lt~1:1 lie~ tinu ti1>n F old(ff l ! i[St~le1:1 ll(n tin11 ti1>n Dirt~i:1 m1J l
l ; !

lnst•ll
~Command Line

I
~···· [Cancel)

lnst~ll SPJ.ct•d compon.nts of tM A/UX D•v•lo~r •s Tools CD onto OJOUr
A/UX SOJ st•m.

' lns1<1II)
1.0

2. Select the checkboxes for the options you want to install. An installation dialog box
with all the options selected is shown in Figure 1-2.

■ Figure 1-2 Installation dialog box: All options selected

-Install Options

! Macintosh Toala ! ! Uni ■ Teals I j r8I MPW 3.2b6 j : r8I R/UH RNSI C Compiler
i r8I MPW C++ 3.1 b4 ; ! r8I R/UH C++ Language System
i r8I MacsBug 6.2 ! i r8I dbH symbolic Debugger ;

! r8I SRDE 1.3a5 i I

i r8I ResEdlt 2.0 j i '
i r8I R/UH System Call Library ! I r8I H Window System H 11 R4 !
;

] ! ! (Select Destination Directory ! (Select Destination Folder l!
j i ------·

~Command Line ·
Install -l"'f'Vto ·t :mK :' -><to ' /:mK :M•c>< :· -MPV32 -MP'ft'CPLUS -MACSBUG -SAOE-RESEOIT

AU><SYSCM.L -AUXC89 -AU>CCPLUS -OS>< -><I IR4

-Help ()
Install nJ.ct•d compon.nts of tM A/UX D•nlo~r·s Tools CD onto OJOUr

Cancel

A/UX SOJStPm.

' Install)
1.0

1-6 A/UX Development Tools

..---,

2. Select a destination folder if the options you want to install include any MPW Tools .

3. Select a destination directory if you want to install the Xl 1 R4 option.

4. Click the Install buuon. Installation time varies with the number and type of options
selected.

■ Figure 1-3 Installation in process message

MacPartltlon:lnstallatlon Folder:Worlcsheet
lnshllor

Insta l ling A/UX Systaa Lib~ary

Once the installation is complete, the system informs you (see Figure 1-4).

■ Figure 1-4 Installation complete message

MacPartition: Installation F older:Worksheet
lnshllor

Installing A/UX Systaa Lib~cry

A/UX Sysla• Library Installation successfully co11plata<I

Once the system informs you of completion, the system asks if you want to perform
another installation. (see Figure 1-5).

Chapter 1 A/UX Programming Environment 1-7

- --- -------- ----

■ Figure 1-5 Another Installation dialog box

Another Installation? Click "Yes" to
perform additional Installations or "No" to
eHit the installation process.

I(Yes B
[No] Cancel

3. Click the No button. The system reminds you how to terminate the Installer. (see
Figure 1-6).

■ Figure 1-6 Installation complete dialog

Installation complete! Select Quit from the File menu
to eHit the Installer.

I(OK

4. Click the OK button.

u

5. Select Quit from the File menu to exit the installer. The system asks if you want to save
the Worksheet file. (see Figure 1-7).

■ Figure 1-7 Save Worksheet dialog box

Saue changes to MacPartitlon: Installation
Folder.Worksheet

((Yes B
(No) Cancel

1-8 A/UX Development Tools

6. Click the No button.

Installation of the A/UX Developer's Tools software is now complete.

Chapter 1 A/UX Programming Environment 1-9

Chapter 2 Hybrid Applications

2-1

This chapter describes how to create and debug hybrid applications­
applications that combine the power of the UNIX® operating system
with the ease of use inherent in the Macintosh user interface. This ability
gives developers and system integrators tremendous flexibility in
methods to increase the convenience and power of their applications .

Hybrid applications can be efficiently built within the MPW
environment .. I3efore you can effectively use the A/UX Toolbox to build
hybrid applications from your UNIX applications, you must be familiar
with Macintosh (event-driven) programming techniques.

Types of hybrid applications

A/UX Version 2.0 can run several classes of applications. In the first class are traditional
UNIX applications that employ a terminal interface, or more recent UNIX applications
that use the X Window System as a graphical interface. In the second class are Macintosh
applications that are designed to work with the Macintosh Operating System, but can run
unmodified on A/UX 2.0 provided they do not violate the Macintosh application
guidelines for A/UX in AIUX Toolbox: Macintosh ROM Interface. the third class of
applications are hybrid applications.

Hybrid applications are programs that employ techniques from both the UNIX and
Macintosh application models. There are two basic types of hybrid applications. The first
type is a UNIX application that uses the A/UX Macintosh Toolbox to provide an interface
that has the Macintosh look and feel. This document refers to this type of hybrid
application as a UNIX hybrid application. The A/UX CommandShell is an example of a
UNIX hybrid application. The second type of hybrid application is a Macintosh
application that makes UNIX system calls. This document refers to this type of hybrid
application as a Macintosh hybrid application.

UNIX hybrid applications

UNIX hybrid applications are usually written in the C programming language and compiled
with the A/UX C compiler. The A/UX c89 C compiler has several language extensions that
make it easier to create a UNIX hybrid application than was previously possible. UNIX
hybrids are linked with the A/UX loader (1ct) into a COFF (Common Object File Format)
executable file that has special startup routines to attach the shared memory segment that
is central to the A/UX MultiFinder® environment.

Programming guidelines for creating UNIX hybrid applications are given in AIUX Toolbox:
Macintosh ROM Interface You can find additional details regarding the language
extensions implemented in the A/UX ANSI C compiler in the AIUX ANSI C Reference
Manual.

UNIX hybrid applications require a special debugging environment because of the
location of programs in memory (see Figure 2-1). The A/UX Toolbox runs in user space in
A/UX. This is a virtual, protected memory space that shares the system resources with all
other processes running in user space. These processes are not allowed to access hardware
directly. Instead, they must make a request to the A/UX kernel through a mechanism called
a system call to deal with the hardware. The kernel, which runs in system space, then
returns data, status, and other information back to the caller. The system call is a well­
defined interface that gives UNIX systems some degree of application portability.

2-2 A/UX Development Tools

-· - ··--·-- ------------- -------

The physical memory layout of an A/UX system is shown on the left side of Figure 2-1 . The
kernel resides at the lowest addresses followed by a shared low memory segment. This
segment includes the Macintosh ROMs, which contain all the Toolbox routines. the A/UX
MultiFinder enfironment, running in a program called startmac, is next higher in addresses.
The remainder of the physical memeory space is available for the text, data, and bss
segments of whatever hybrid and UNIX applications may be running. These applications
aresubject tothe normal swapping routines inherent in any UNIX system.

The virtual memory layout of an A/UX system is shown on the right side of Figure 2-1. All
applications, except purely Macintosh applications, make requests for operating system
services by means of system calls, shown in Figure 2-1 as arrows pointing into the kernel
space. Each UNIX hybrid application has its own virtual mapping of the shared low
memory and Macintosh ROMs.

The virtual mapping of low memory and ROM can make debugging somewhat complex.
The dbx debugger contains some features that were specially designed to facilitate
debugging UNIX hybrid applications. This chapter briefly describes those features and the
general procedures for debugging UNIX hybrid applications. Chapter 4 contains a
complete reference to dbx .

■ Figure 2-1 A/UX memory map

0
Physical memory

Kernel

5h:ired low memory

Mac App

Mac App

Mac App

MacROMs

.text

startmac

. data Hybrid

. bss

. text

. data

.bs s

n ._ ___ _.

Unix App

Virtual memory

Kernel

shared low memory l
------- - -- - -
- __ Mac App___ s t art ma c

Mac App

Mac App

MacROMs

shared low memory

. t ex t

.da t a

.bs s

MacROMs

. t e xt

.da t a

Hybrid

Unix App
t--_--_- _-. ~-~-~ -_-_---tj

Chapter 2 Hybrid Applications 2-3

Macintosh hybrid applications

UNIX system calls are the basic application program interface (API) to the UNIX
operating system. By careful use of UNIX system calls, a Macintosh hybrid application can
access the powerful features of the UNIX operating system when running under A/UX. The
A/UX Developer's Tools product contains a library of A/UX system calls that can be
accessed from Macintosh applications. The system calls are designed to be called by
programs written in the MPW C language, but other high-level language or assembly­
language programs may also use the A/UX system call library if they can follow the MPW C
calling conventions.

A special case of Macintosh hybrid application is a HyperCard stack that contains either
XCMDs or XFCNs that make UNIX system calls. An XCMD is a code resource that
implements a custom HyperCard command. An XFCN is a code resource that implements a
custom HyperCard function . The difference between an XCMD and an XFCN is that an
XFCN returns a value to the HyperCard stack that invoked it, whereas an XCMD performs
an action without returning a result. XCMDs and XFCNs are created by writing the code for
the command or function in a high-level language or in assembly language, compiling or
assembling it, then linking it into code resource format. The code resource must be
copied to either the HyperCard stack that calls the XCMD or XFCN, the HyperCard
application itself, or any HyperCard stack that is visible in the stack hierarchy. The code
resource is copied using the ResEdit program. More detailed information about creating
XCMDs and XFCNs is contained in Apple HyperCard Script Language Guide: The HyperTa/k
Language.

A Warning The integration of the Macintosh API within the context of a
multiprocess operating system like UNIX is made possible by a very
precise balance of the requirements posed by each programming
model. Developers of hybrid applications must take special care not
to disturb this balance. Specific guidelines and areas to watch out for
will be given in this document, but the developer should be prepared
for the possibility of "spectacular crashes" during the initial phase of
the development cycle . ..,

2-4 A/UX Development Tools

A/UX file systems

A/UX 2.0 supports both UNIX and Macintosh types of file systems. The UNIX file system is
implemented by the A/UX kernel, and can be one of three types: UFS, SVFS, or NFS. All
three share many common attributes, among them the convention of using a slash
character (/) to separate directory components in a pathname and to indicate the root of
the file system tree. These file systems are in consequence practically indistinguishable
from an application program's perspective (See Figure 2-2). UNIX applications, UNIX
hybrid applications, and Macintosh hybrid applications can access the UNIX file systems
(shown as the A/UX Doamain in Figure 2-2) using UNIX system calls and library routines
implemented with UNIX system calls. Macintosh applications can access the UNIX file
systems as if they were Macintosh file systems contained on the volume named slash (/).

The Macintosh hierarchical file system (HFS) can reside on hard disks, floppy disks, and
AppleShare® servers. A hard disk may be partitioned so that it contains a Macintosh file
system and one or more UNIX file systems. The Macintosh file system, unlike UNIX file
systems, uses a colon character (:) to separate directory (folder) components in a
pathname. The root of a Macintosh file system hierarchy is indicated by the name of the
volume on which it resides. Macintosh applications, Macintosh hybrid applications , and
UNIX hybrid applications can access the Macintosh file systems using the A/UX Macintosh
Toolbox.

♦ Note: UNIX applications cannot directly access Macintosh file systems.

■ Figure 2-2 A/UX file systems

A/UX
Domain

~!llltl1l
I

f looo~ ba e kuo

HFS
Domain

Chapter 2 Hybrid Applications 2-5

A/UX system call library

Developing Macintosh hybrid applications is simplified by the use of the NUX system call
library, which is part of the NUX Developer's Tools product. Prior to the availability of
this library, developers had to use assembly language to access NUX system calls with the
trap instruction. Using the A/UX system call library, developers writing Macintosh hybrid
applications can access A/UX system calls from a high-level language in much the same way
as if they were writing a UNIX application. The system call library is named
lib aux_ sys. o and is an MPW format library file. Developers must include this library
name in the MPW Link command that builds applications that use these system calls. Foe
example:

Link -d -c 'MPS I -t MPST myapp . c . o libaux_sys.o a
"{Libraries}"StdClib.o "{Libraries}"Runtime.o

Because the MPW C programming environment implements many run time routines that
have the same name as NUX system calls, the NUX system call library uses unique names
for each system call.The naming convention adopted places the prefix aux prior to each
system call name, for example, aux read<>. This prefix differentiates MPW C run time
routines and NUX system calls.

♦ Note: All of the examples and procedures for creating Macintosh hybrid applications
described in this document assume that you are using the MPW C development
environment. If you are using another language or development environment you must
adapt these procedures as if you were using an MPW C library from your environment.

A/UX system header files

Many A/UX system calls require arguments whose type or value is specified in NUX system
header files. The MPW C development environment also uses header files , many of which
have the same name as the A/UX system header files. To avoid this ambiguity, you must
give the full pathname of any NUX system header file that is required in your
application-for example,

#define SYSV SOURCE 1

#include </:usr:include:sys:errno.h>

#include <Stdio.h>

2-6 A/UX Development Tools

.----....

The first line in the example is needed to fool the A/UX system header file into thinking
that it is being compiled by the A/UX C compiler. You could accomplish the same thing by
compiling the program with the MPW C option to define a symbol, for example,

-d SYSV SOURCE

The second line in the example includes the system header file errno. h by giving the full
pathname of the header file in Macintosh file system notation. The third line includes one
of the MPW C header files; this is different than the A/UX header file
/usr/include/stdio.h.

You should be aware that some A/UX system header files in the / us r /inc 1 ude directory
are just pointers to the actual header file in the / usr /include/sys directory. When
using these header files to create a Macintosh hybrid application, you must use the
pathname of the actual header file, not the pointer to it. To determine if a header file is a
pointer to another header file you must look at the header file to see if it includes another
header file with the #include directive.

A/UX system calls and blocking

The A/UX MultiFinder environment is based on a special A/UX process called startmac.

This process is in control of the virtual Macintosh environment, which is the default
interface to A/UX from the system console. Because all Macintosh applications (including
Macintosh hybrid applications) execute within this one process, it is critical that no single
Macintosh application dominates the time slice allotted to the startmac process.

Macintosh applications interact with each other in a cooperative multitasking
environment. What this means is that every Macintosh application will allow its execution
to be interrupted before a significant period of time elapses. The mechanism for this
interruption is the Wai tNextEvent Macintosh Toolbox function. When a Macintosh
application calls Wai tNextEvent, it is a signal to MultiFinder that the application can
be interrupted to give other applications executing in the startmac process an
opportunity to perform some processing.

UNIX applications normally execute in a preemptive multitasking environment. This
means that the operating system determines when to interrupt an executing process, and
this may occur at any time the operating system chooses. Most often this happens when
the application issues a system call that requires some external event to complete. The
operating system will put that process to sleep until the external event has completed. In
the meantime, other processes have an opportunity to execute. This behavior is referred
to as blocking.

Chapter 2 Hybrid Applications 2-7

Blocking is normally not a problem for UNIX applications because they don't have
anything to do until the system call completes anyway. For an application running within
the startrnac process, however, blocking prevents ail of the Macintosh applications
running in startrnac from continuing. If the block remains in effect for more than a few
seconds, the A/UX system console appears to be frozen.

To avoid this unpleasant situation, you must ensure that any A/UX system calls issued from
a Macintosh hybrid application will complete in a brief period of time. For those system
calls that have the potential to block; you must either know that blocking will not occur
(for example, if you know that data is available when issuing an aux read system call), or
else you must modify the behavior of the system call to eliminate blocking. You can
change a system call's behavior by using the auxfcntl () system call to modify the status
flags for a file descriptor to include the o _ NDELAY flag. For more information about
blocking and the o_NDELAY flag, see the fcntl(2) documentation in the AIUX
Programmer's Reference, Section 2.

Listing of A/UX system calls

Tables 2-1 and 2-2 group the system calls available in the A/UX System call library according
to their function.

This system calls in Table 2-1 control various input/output functions of the operating
system.

■ Table 2-1 Input/output system calls

auxaccept auxbind auxconnect

auxgetsockopt auxlisten auxopen

auxpipe auxread auxreadv

auxrecv auxrecvfrom auxrecvmsg

auxselect auxsend auxsendmsg

auxsendto auxsetsockopt auxsocketpair

auxwrite auxwritev

This system calls in Table 2-2 control various functions of the operating system.

2-8 A/UX Development Tools

. .----.....

■ Table 2-2 Utilitysystem calls (Continued)

aux exit

auxaccess

auxchmod

auxclose

auxdup

auxexecle

auxexecve

auxfchmod

auxflock

auxfstatfs

auxgetcompat

auxgetegid

auxgetgid

auxgethostnam

auxgetpid

auxgettod

auxlocking

auxmkdir

auxnfssvc

auxrmdir

auxsigcall

auxsigvec

auxstatfs

auxsync

auxtimes

auxumount

auxunmount

auxuvar

GetAUXErrno

aux _sysm68K

auxcerror

auxchown

auxcreat

auxexec

auxexeclp

auxexecvp

auxfchown

auxfsmount

auxfsync

auxgetdirent

auxgetenv

auxgetgroups

auxgetitimer

auxgetppid

auxgetuid

auxlseek

auxmsgsys

auxreadlink

auxsemsys

auxsigcode

auxsocket

auxstime

auxsyscall

auxtruncate

auxuname

auxustat

auxwait

SetAUXErrno

aux exit

auxchdir

auxchroot

auxdtablesize

auxexecl

auxexecv

auxexit

auxfcntl

auxfstat

auxftruncate

auxgetdomain

auxgeteuid

auxgethostid

auxgetpeername

auxgetsockname

auxlink

auxlstat

auxnfs_getfh

aux rename

auxshmsys

auxsignal

auxstat

auxsymlink

auxtime

auxumask

auxunlink

auxutime

auxwait3

Chapter 2 Hybrid Applications 2-9

Description of A/UX system calls

The following section describes all of the system calls available in the A/UX System call

library, listed alphabetically. Unless otherwise specified, the usage and functionality of
each system call is as described for its counterpart in the AIUX Programmer's Reference,
Section 2.

■ auxaccept-accept a connection on a socket

#include </:usr:include:sys:types.h>
#include </:usr:include:sys:socket.h>
int auxaccept(int s, struct sockaddr *addr, int *addrlen)

■ auxaccess-<letermine accessibility of a file

#include </:usr:include:unistd.h>

int auxaccess(char *path, int amode)

■ auxbind-bind a name to a socket

#include <sys/types.h>
#include <sys/socket.h>
int auxbind (int s, struct sockaddr * name, int name/em

■ auxcerror-need description

■ auxchdir-change working directory

int auxchdir (char *path)

■ auxchmod-change mode (permissions) of a file

#include <sys/types.h>
#include <sys/stat.h>
int auxchmod(char *path, mode_t mode)

■ auxchown, auxfchown-change owner and group of a file

#include <sys/types.h>
int auxchown (char *path, uid_t owner, gid_t group)
int auxfchown (int fd, owner, group)

■ auxchroot-change root directory

int auxchroot (char *path)

■ auxclose-close a file descriptor

int auxclose(int fl/des)

■ auxconnect-initiate a connection to a socket

#include <sys/types.h>
#include <sys/socket.h>
int auxconnect (int s, struct sockaddr *name, int name/en)

2-10 A/UX Development Tools

■ auxcreat-create a new file or rewrite an existing file

#include <sys/types .h>

#include <sys/stat .h>

#include <sys/fcntl.h>
int auxcreat (char *path, mode mode)

■ auxdtablesize-need description

■ a uxdup-duplicate a descriptor

int auxdup (int o/dd)

■ auxexec,auxexecl,auxexeclp,auxexecle,auxexecv,auxexecve,

auxexecvp-execute a file

int auxexecl(char *path, *argO, *argl, ... , *argm
int auxexecv(char * path, * argv [l l
int auxexecle(char

int auxexecve(char

*path, *argO, *argl, ... , *argn, *envp[] l

*path, *argv[J, *envp[J l

int auxexeclp(char

int auxexecvp(char

*file, *argO, *argl, ... , *argn, OJ

*file, *argv[], extern char **environ)

■ auxexecl-see auxexec

■ auxexeclp--see auxexec

■ auxexecle-see auxexec

■ auxexecv-see auxexec

■ auxexecve-see auxexec

■ auxexecvp--see auxexec

■ a uxexi t , aux_ exit-terminate process

void auxexit (int status)
void aux _exit (int status)

■ auxfchmod-need description

■ auxfchown-see auxchown

■ auxfcntl-file control

#include <sys/types.h>

#include <fcntl.h>
int auxfcntl (int ft/des, cmd, arg)

■ auxflock-apply or remove an advisory lock on an open file

#include <sys/file .h>
auxflock (int fd, operation)

Chapter 2 Hybrid Applications 2-11

■ auxfsmount-mount a network file system (NFS)

#include <sys/mount.h>
int auxfsmount (int type, char *dir, int flags, caddr t data)

■ auxfstat-see auxstat

■ auxfstatfs-see auxstatfs

■ auxfsync-synchronize a file's in-core state with that on disk

int auxfsync (int jd)

■ auxftruncate-see auxtruncate

■ auxgetcompat-need description

■ auxgetdirent-get directory entries.

#include <sys/types.h>

#include <sys/dir.h>
int auxgetdirent (int d, char *buf, int nbytes, long *basep)

■ auxgetdomain-get the domain name of the current network domain

int auxgetdomain (char *name, int name/em

■ auxgetegid-see auxgetuid

■ auxgetenv-need description

■ auxgeteuid-see auxgetuid

■ auxgetgict-see auxgetuid

■ auxgetgroups-get group access list

#include <sys/param.h>
int auxgetgroups (int gidsetlen, *gidsel)

■ auxgethostid-get unique identifier of current host

int auxgethostid()

■ auxgethostnam-get name of current host

int auxgethostnam(char *name, int name/em

■ auxgeti timer-get value of interval timer

#include <sys/time . h>
auxgetitimer (int which, struct itimerval *Value)

■ auxgetpeername-get name of connected peer

int auxgetpeername (int s, struct sockaddr *name, int *name/en)

■ auxgetpid, auxgetppid-get process or parent process IDs

#include <sys/types.h>

pid_t auxgetpid()

2-12 A/UX Development Tools

pid_t auxgetppid()

■ auxgetppid-see auxgetpid

■ auxgetsockname-get socket name

int auxgetsockname (int s, struct sockaddr *name, int *name/en)

■ auxgetsockopt, auxsetsockopt-get and set options on sockets

#include <sys/types.h>

#include <sys/socket.h>
int auxgetsockopt (int s, level, optname, char *optval, int *optleni
int auxsetsockopt (int s, level, optname, char *optval, int *optleni

■ auxget tad-get time and date

#include <sys/time.h>
int auxgettod(struct tirneval *LP, struct timezone *lZp)

■ auxgetuid, auxgeteuid, auxgetgid, auxgetegid~get real and effective user

IDs and group IDs

#include <sys/types.h>

uid t auxgetuid()

uid t auxgeteuid()

uid t auxgetgid()

uid t auxgetegid()

■ auxlink-link to a file

int auxlink(char *pathl, *path2)

■ auxlisten-listen for connections on a socket

auxlisten (int s, backlog)

■ auxlocking-provide exclusive file regions for reading or writing

int auxlocking (int Ji/des, int mode, int size)

■ auxlseek-move read/write file pointer

#include <sys/types.h>

#include <unistd.h>
off_t auxlseek (int Ji/des, off t offset, int whence)

■ auxlstat-see auxstat

■ a uxmkdi r-make a directory file

int auxmkdir (char *path, int mode)

■ auxmknod-make a directory, or a special or ordinary file

int a uxmknod (char * path, int mode, elev)

Chapter 2 Hybrid Applications 2-13

■ auxmsgsys-need description

■ auxnfs_getfh-get a file handle

#include <rpc/types.h>

#include <sys/errno.h>

#include <sys/time.h>
#include <nfs/nfs.h>
int auxnfs_getfh (int ft/des, fhandle t *Jhp)

■ auxnfssvc-NFS daemon

int auxnfssvc (int sock)

■ a uxopen-open for reading or writing .

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>
int auxopen(char *path, int oflag[, int mode])

■ a uxpipe--<:reate an interprocess channel

int auxpipe (int ft/des [2])

■ auxread, auxreadv-read from file

#include <sys/types . h>

#include <sys/uio.h>
int auxread (int ft/des, char * buf, unsigned nbytes)
int auxreadv (int ft/des, struct iovec *iov, int iovcnt)

■ auxreadlink-read value of symbolic link

int auxreadlink (char * path, * buf, int bufsiz)

■ auxreadv-see auxread

■ auxrecv, auxrecvfrom, auxrecvmsg-receive a message from a socket

#include <sys/types.h>

#include <sys/socket.h>
int auxrecv (int S, char *buf, int /en, flags)
int auxrecvfrom(int S, char *buf, int /en, flags, struct sockaddr

*from, int *from/en)
int auxrecvmsg (int S, struct msghdr msg [], int flags)

■ auxrecvfrom--see auxrecv

■ auxrecvmsg-see auxrecv

■ auxrename--<:hange the name of a file

int auxrename (char *from, *tO)

2-14 A/UX Development Tools

■ aux rmdi r-remove a directory file

int auxrmdir (char *path)

■ auxselect-synchronous 1/0 multiplexing

#include <sys/time.h>
int auxselect (int nfds, *readfds, *writefds, *execptfds, struct timeval

* timeout)

■ auxsemsys-need description

■ auxsend, auxsendto, auxsendmsg-send a message from a socket

#include <sys/types.h>

#include <sys/socket.h>
int auxsend (int S, char *msg, int fen, flags)
int auxsendto (int s, char *msg, int fen, }lags, struct sockaddr * to,

int to/em
int auxsendmsg (int s, struct msghdr msg [J , int flags)

■ auxsendmsg-see auxsend

■ auxsendto-see auxsend

■ auxsetsockopt-see auxgetsockopt

■ auxshmsys-need description

■ auxsigcall-need description

■ auxsigcode-need description

■ auxsignal-need description

■ a uxsigvec-optional BSD-compatible software signal facilities

#include <signal.h>

struct auxsigvec {

) ;

int (*sv_handler) ();

int sv mask;

int sv_flags;

int auxsigvec (int sig, struct sigvec *Vee, *OVeC)

■ auxsocket-create an endpoint for communication

#include <sys/types.h>

#include <sys/socket.h>
int auxsocket (int af, type, protocol)

■ auxsocketpair-need description

■ auxstat, auxfstat, auxlstat-get file status

#include <sys/types.h>

Chapter 2 Hybrid Applications 2-15

---- ---- - - -------- -- --

#include <sys/stat.h>
int auxstat (char *path, struct stat *buj)
int auxfstat(int ft/des, struct stat *buf>
int auxlstat {char *path, struct stat *bu/)

■ auxstatfs , auxfstatfs-get file system statistics

#include <sys/types.h>

#include <sys/vfs.h>
int auxstatfs (char *path, struct statfs *bu/)

int auxfstatfs(int ft/des, struct statfs *buf>

■ auxstime-set time

int auxstime(long *W)

■ aux symlink-make a symbolic link to a file

int auxsymlink (char *name], * name2)

■ auxsync-update superblock

void auxsync ()

■ auxsyscall-need description

■ aux time-get time

#include <time.h>
time t auxtime((/ong*)O)

time t time (t/oc) ;

time t (* t/oc) ;

■ auxtimes-get process and child process times

#include <sys/types.h>

#include <sys/times.h>
clock_t auxtimes(struct tms *buffen

■ auxtruncate, auxftruncate-truncate file to a specified length

int auxtruncate (char *path, int length)
int auxftruncate (int fd, length)

■ aux uma s k-set and get the file creation mask

#include <sys/types.h>

#include <sys/stat . h>
mode_t auxumask ccmask)

mode_ t cmask)

■ auxumount-unmount a file system

int auxumount (char *Spec)

2-16 A/UX Development Tools

'

- --- ----

■ a uxunarne-get name of current system

#include <sys/utsnarne.h>
int auxunarne (struct utsnarne *name)

■ auxunlink-remove directory entry

int auxunlink (char *path)

■ auxunrnount-remove a file system

auxunrnount(char *name)

■ auxustat-get file system statistics

#include <sys/types.h>

#include <ustat.h>
int auxustat(int dev, struct ustat *buji

■ aux u t irne-set file access and modification times

#include <sys/types.h>

#include <utirne . h>
int auxutirne (char *path, struct utimbuf *limes)

■ a uxuva r-return system-specific configuration information

#include <sys/var.h>
int auxuvar(struct var *V)

■ a uxwai t-wait for a child process to stop or terminate

int auxwait (int *Stat_loc)
int auxwait ((int*) 0)

■ a uxwai t 3-nonblocking wait for a child process to stop or terminate

#include <sys/wait.h>
int auxwait3 (union wait *Status, int options, 0)

■ auxwrite, auxwritev-write on a file

#include <sys/types.h>

#include <sys/uio.h>
int auxwrite (int fl/des, char *buf, unsigned nbytes)
int auxwritev (int fl/des, struct iovec *iov, int ioveclem

■ auxwritev-see auxwrite

■ aux exit-see auxexit

■ aux __ sysrn68K-need description

■ GetAUXErrno-retum the NU)(errno value

#include </:usr:include:sys:errno.h>

int GetAUXErrno()

tf

Chapter 2 Hybrid Applications 2-17

■ SetAUXErrno-set the A/UX errno value

#include </:usr:include:sys:errno.h>
void SetAUXErrno(int value)

Additional library routines

Creating a Macintosh hybrid application can be greatly simplified by using the additional
library routines described in this section. These routines were developed to provide a
higher level of functionality than the basic system calls provide. The source code for these
library routines is also provided with A/UX Developer's Tools so that you can customize
them if your needs require.

auxfork_pipe

The auxfork_pipe () function will perform a fork system call, set up optional
input/output pipes between the parent and child processes, and call a procedure to
perform the final processing for the child process. The auxfcirk_pipe (J function
returns a Macintosh memory handle if the function completed successfully; otherwise it
returns the value NULL. The function is defined as

#define TOCHILD 0

#define TOPARENT 1

#define PID 2

#include <Memory.h>
Handle auxfork_pipe(int toparent, int tochild,

void (*childtask) (), void *childarg)

int cleanup_auxfork_pipe(Handle globals)

The toparent argument should have a nonzero value if you want the parent process to be
able to read the standard output and standard error messages that the child process may
write. The tochild argument should have a nonzero value if you want the parent process
to be able to write messages that the child process will read from standard input.

2-18 A/UX Development Tools

.--------.._

---- --

The childtask argument is a function pointer that is used to call a function from the
child process after the pipes have been set up. The function that childtask points to
must.all either one of the a uxexec () system calls or the a uxexi t < l system call . If it
does not, two copies of the A/UX Macintosh environment are left active, rendering the
A/UX Macintosh environment inoperable. The childarg argument allows you to pass one
generic pointer argument to the childtask function. Multiple arguments to child~ask

can be encoded as a list pointed to by childarg, which the childtask function can
then decode into individual arguments.

The handle returned by auxfork_pipe < l on successful completion points to an area of
memory that contains several global values that are needed for subsequent functions. The
auxcleanup _fork_pipe (l function must be called when your application has
completed interacting with the child process and is ready to have the child process
terminate. This function closes pipes, releases memory, and waits for the child to
terminate.

The constants TOCHILD, TOPARENT and PID defined in the auxfork_pipe () function
are used to access some of the global values that auxfork_pipe stores in the memory
pointed to by the handle. The following is an example of how to access these values:

Handle global_handle;
int *globals;

int inpipe,outpipe,childpid;

global_handle = auxfork_pipe(l,1,childtask,childarg);

if (global_handle) {

globals= (int *)*global_handle;

inpipe = globals[TOPARENT);

outpipe = globals[TOCHILD];

childpid = globals[PID];

The variable inpipe set by this procedure holds the file descriptor that the parent
process can use to read the standard output and standard error data produced by the
child process. The variable outpipe holds the file descriptor that the parent process can
use to write to the standard input of the child process. The variable childpid holds the
UNIX process ID of the child process.

Chapter 2 Hybrid Applications 2-19

♦ Note: Do not call auxcleanup _ fork _pipe c) until you are sure that the child
process is ready to terminate. The call to auxcleanup_fork_pipe () will not return
until the child process terminates, and the A/UX Macintosh environment will not be
usable in the interim. If you want to start a background process, you should have
auxfork_pipe () start a process that activates the background process and then
terminate so that auxcleanup_fork_pipe () can be successfully called after
calling auxfork_pipe () .

auxsystem

The auxsystem () function executes an A/UX command and sends all of the standard
output and standard error output from the command to the standard output of the calling
program. This function works only if called by an MPW program that is running with the
standard I/O facilities of the MPW shell environment. The function is defined as

int auxsystem(char *command)

The value returned by auxsystem is the status code with which the A/UX command
exited.

auxfgets

The a uxf gets c) function simulates the behavior of the UNIX library function fget s c) .
The argument buf points to an area of memory where the text line will be stored, the
argument count indicates the size in bytes of that memory area, and the argument file

is the file descriptor from which to read. The file descriptor will usually be the inpipe file
descriptor, which is obtained with the auxfork_pipe () function described previously.
The function is defined as

char *auxfgets(char *buf, int count, int file)

The function reads from the given file descriptor until it either fills the buffer, encounters
a new-line character, an error condition occurs, or the timeout value is exceeded (the
timeout value is the number of retries; o means there is no timeout). If read, the
terminating new-line character will be placed in the buffer. Space is reserved in the buff er
for a null byte to indicate the end of the input.

♦ Note: See the information on system calls that block in the section "A/UX System Calls
and Blocking" earlier in this chapter.

2-20 A/UX Development Tools

'

HyperCard XCMDs and XFCNs

One of the more elegant uses of the A/UX system call library is to create HyperCard XCMDs
and XFCNs to allow HyperCard stacks to access UNIX. This special type of Macintosh
hybrid application is easier to create because of the power and flexibility of the
HyperTalk® scripting language.

A sample Macintosh hybrid application using HyperCard

The ability to issue A/UX system calls from HyperCard external functions (XFCNs) is an
important use of the A/UX system call library. A sample application (in HyperCard an
application is referred to as a stack) is included with A/UX Developer's Tools. This sample
application implements a UNIX mail reader via HyperCard. To give you a better
understanding of how to create a HyperCard stack that uses A/UX system calls the
following sections examine how this sample application is implemented. All of the source
code for the stack and its XFCNs is included, so you can take this example and customize
it to your requirements. (For more information about writing XFCNs and HyperCard
stacks, refer to Apple HyperCard Script I.anguage Guide: The HyperTa/k I.anguage.)

This application provides a graphical interface to the UNIX command mailx . Normally
this command is run from a UNIX shell in character mode. The program displays lines of
text to the user, and the user can enter text commands to the program when prompted to
do so. This sample application acts as a front-end to the mailx program, so that the user
can interact with mailx in the Macintosh style of direct manipulation by pointing with
the mouse and clicking a mouse button.

The HyperCard XFCNs

The HyperCard stack must be able to perform four basic operations in order to
implement this type of front-end application. In this section, these four operations are
described in detail because they are building blocks that you can use to create your own
Macintosh hybrid applications using HyperCard.

Chapter 2 Hybrid Applications 2-21

The XFCN forkpipexfcn

First, the application must be able to initiate execution of the UNIX program (referred to
as the child process) and establish communication channels (referred to as pipes) between
HyperCard (the parent1) and the child process. In this case, the UNIX program is named
/usr/ucb/mailx. This is accomplished using the XFCN named forkpipexfcn, which
is based on the function auxfork_pipe (>,contained in the A/UX system call library
(libaux_sys. o).

This XFCN accepts one parameter, which is a string containing the name of the UNIX
command to be executed. The following section of the XFCN forkpipexfcn checks to
see that exactly one parameter has been passed to it from the HyperCard stack. It fetches
that parameter and places it into the character pointer named command, and then passes
that pointer as the last parameter to the auxfork_pipe (> function. The parameters
toparent and tochild are flags that instruct auxfork_pipe () to set up pipes for
communication from the child to the parent, and from the parent to the child. The
parameter childtask is a function pointer that will be called by the child process to

execute the UNIX command that is specified by the parameter command.

if (paramPtr->paramCount != 1) global_handle = NULL;

else {

command= *(paramPtr->params[O]);

global_handle =
auxfork_pipe(toparent,tochild,childtask,command);

} ;

paramPtr->returnValue = hexhandle(global_handle,8);

The value returned by auxfork_pipe (l is a handle that points to a memory area that
contains information about the child process and the pipes that have been set up to
communicate with it. This information is required by the other XFCNs that will be used to
communicate with the child process. The function hexhandle () converts the handle
address into a hexadecimal string that is stored in another handle to be returned to
HyperCard as the result of the XFCN.

1Jn reality, the parent process is startmac, the A/UX Multifinder environment. HyperCard is one of
possibly many Macintosh applications that may be running within the startmac process under the control
of Multifinder. For the purposes of this discussion, the term parent refers to the specific Macintosh
application that initiated execution of the child process.

2-22 A/UX Development Tools

.-·-.

The function childtask () is needed to make aux fork_pipe () generic. It makes the
A/UX system call auxexecl () to tum the child process, which initially is a copy of the
startrnac process, into the UNIX command to be executed. It is very important that
this function do nothing more than perform an exec system call by calling a uxexecl ()

or one of the other A/UX system calls that exec a command. (If an exec call is not
immediately made, there are two copies of the startrnac process, a situation that will
quickly crash the system.) The call to aux_exi t () that follows the call to auxexecl <)

is required in case exec failed for some reason.

void childtask(command)

char *command;

(void) auxexecl(command, 0);

(void) aux_exit(l27);

If the UNIX command to be executed requires arguments, you can modify this XFCN so
that the parameter command that is passed to childtask () points to a list of
arguments to be included in the exec system call.

The XFCNs fgetsxfcn and fgetfxfcn

The next operation is to read data from the child process. The XFCN forkpipexfcn set
up two pipes for communicating with the child process. One of these pipes reads data
that the child process writes to its standard output or standard error streams.

This is accomplished using the XFCNs fgetsxfcn and fgetfxfcn. These XFCNs are
based on the function auxfgets (), which is contained in the A/UX system call library
(libaux_sys. o). Here is a listing for the main code to the XFCN fgetsxfcn .

void do_xcrnd(pararnPtr)

XCrndPtr pararnPtr;

char

int

Handle

int

buf[256];

cnt,tirneout,toparent ;

input,global_handle;

**globals;

if (pararnPtr->paramCount < i) return;

global_handle = (Handle) handlehex(*(pararnPtr->pararns[O]));

if (pararnPtr->pararnCount > 1)
timeout= (int) tirnedec(*(pararnPtr->params[l]));

else timeout= O;

Chapter 2 Hybrid Applications 2-23

globals= (int **)*global_handle;

toparent = (int) globals[TOPARENT];

if ((char *)auxfgets(buf,256,toparent,timeout)

cnt = strlen(buf);

if (cnt && (buf[cnt-1] == '\n')) {

if (cnt == 1) buf [0] = ' ';

else buf[--cnt] = '\0';

} ;

else cnt = O;

input= NewHandle(cnt+l);

strcpy(*input,buf);

paramPtr->returnValue = input;

This XFCN accepts either one or two parameters. The first is the handle that was returned
as the value of the XFCN forkpipexfcn. The second parameter is an optional timeout
value that is used to determine how many times to try reading data from the child before
giving up. The timeout value should be adjusted (empirically) to allow enough time for the
child process to write a line of data to the pipe .

The code for this XFCN checks the parameter count, converts the first parameter from a
hexadecimal string to a binary handle address, and converts the second parameter, if
present, from a decimal string to a binary integer. If the second parameter is absent the
value O is used; it denotes no timeout (that is, continue trying to read data until
successful).

6. Important You should omit the timeout value only if you are absolutely certain
that the child will write data to the pipe. If you omit the timeout value
and the child fails to write data to the pipe, the XFCN will not
complete and the entire A/UX MultiFinder environment will lock up. t:::.

After converting the parameters, the XFCN fetches the file descriptor for the pipe that
reads data from the child and calls the auxfgets < l function from the A/UX system call
library using the pipe file descriptor and the timeout value passed to it. The aux f gets < >

function reads from the pipe until it encounters a newline character (the end of a UNIX
text record) or until the number of retries specified by the timeout value is reached. The
aux f gets () function replaces the trailing newline character with a carriage return
character for compatibility with the Macintosh environment.

2-24 A/UX Development Tools

The XFCN then computes the length of the read data and strips off the trailing carriage
return character if it exists . The maximum length of the data read is 256 bytes. The data is
then stored in memory pointed to by a new handle and returned to HyperCard as the
return value of the XFCN. If no data was read, the XFCN will return the value empty to
HyperCard. If only a newline character was read, a single blank will be returned to
HyperCard to distinguish this from the condition where no data was read.

This XFCN fgetfxfcn is a variation on the XFCN fgetsxfcn . It reads multiple lines of
text from the child process until the timeout value is exceeded while attempting to read
the next line. This XFCN returns a value consisting of O or more lines of text separated by
the carriage return character. The value returned to HyperCard by fgetfxfcn is suitable
for placing into a multiline HyperCard text field. The following is the source code for this
XFCN.

void do_xcrnd(paramPtr)

XCmdPtr paramPtr;

char

int

Handle

int

buf[256],eos='\0';

cnt,timeout,toparent;

input,global_handle;

**globals;

if (paramPtr->paramCount < 1) return;

global_handle = (Handle) handlehex(*(paramPtr->params[0]));

if (paramPtr->paramCount > 1) timeout= (int)
timedec(*(paramPtr->params[l]));

else timeout= 0;

globals= (int **)*global handle;

toparent = (int) globals[TOPARENT];

input NewHandle((long) 0);

while (char *)auxfgets(buf,256,toparent,timeout)) (

cnt = strlen(buf);

PtrAndHand (buf, input, cnt);
} ;

PtrAndHand (&eos, input, l);

paramPtr->returnValue = input;

Chapter 2 Hybrid Applications 2-25

The XFCN writexfcn

The next operation required is to write data to the child process. The second pipe set up
by forkpipexfcn is used to write data from the parent to the child process.

This is accomplished using the XFCN named writexfcn. This XFCN is based on the
function auxwri te {), which is contained in the A/UX system call library
(libaux sys . o). Here is a listing of the main code for this XFCN.

void do_xcmd{paramPtr)

XCmdPtr paramPtr;

char

int
Handle

int

*buf;

cnt,tochild;
global_handle,dechandle();

**globals;

if (paramPtr->paramCount != 2) return;

global_handle =
{Handle) handlehex{*{paramPtr->params[0]));

globals (int **) *global_handle;

tochild = (int) globals[TOCHILD];

buf *(paramPtr->params[l]);

cnt strlen{buf);

cnt auxwrite{tochild,buf,cnt) ;

paramPtr->returnValue = dechandle(cnt,5);

This XFCN requires two parameters. The first is the handle that was returned by
forkpipexfcn, and the second is a string that will be written to the child process. It is
usually necessary to terminate a message to the child process with a newline character, and
this can easily be done in HyperCard by concatenating the HyperCard constant
lineFeed to the data string you are writing.

This XFCN returns the number of characters written to the child process. As usual, the
return value is convened to a string and stored in a handle before being returned to
HyperCard.

2-26 A/UX Development Tools

The XFCN cleanupxfcn

The last operation required is to close the open pipes, free any memory that the other
XFCNs allocated along the way, and wait for the child process to terminate. It is very
important that the child process be set to terminate before you call cleanupxfcn . This
XFCN will not return to HyperCard until the child process has terminated, and the A/UX
MultiFinder environment will be unavailable until it has. Here is a listing of the main code
for this XFCN.

void do_xcmd(paramPtr)

XCmd.Ptr paramPtr;

long status;

Handle global_handle,hexhandle();

if (paramPtr->paramCount != 1) return;

global_handle = (Handle) handlehex(*(paramPtr->params[O]));

status= auxcleanup_fork_pipe(global_handle);

paramPtr->returnValue = hexhandle(status,8);

This XFCN requires one parameter, which is the handle that was returned by
~orkpipexfcn . It returns the exit status with which the child process terminated.

The HyperTalk scripts

With the building blocks provided by the four XFCNs just described, we can implement
the UNIX Mail Reader application. The HyperCard stack for this application consists of
two cards; the first card named, "headers," is used to display the list of UNIX mail
messages, and the second card, named "message," is used to display each message. The
application's behavior is specified in HyperTalk scripts associated with the two cards
contained in the stack, and the buttons and fields contained on those cards.

The script for card "headers"

The first card in the UNIX Mail Reader stack displays the list of UNIX mail messages for the
user who has opened the stack. There are two handlers in the script for this stack. The first
is executed when the stack is opened, and the second is executed when the stack is
closed. The content of these two handlers is shown in the following code:

on openStack

global global_handle,linecount

Chapter 2 Hybrid Applications 2-27

put empty into cd field one

put empty into global_handle

put forkpipexfcn("/usr/bin/mailx") into global_handle

if global_handle is empty then go home

put fgetsxfcn(global_handle,2500) into buf

if word 1 of buf is "No" then

put cleanupxfcn(global_handle) into status

put empty into global~handle

play "No mail"

answer "Sorry, no mail"

go to home

else

play "mail.sound"

put fgetsxfcn(global_handle,2500) into buf

repeat with linecount = 1 to 9999

put fgetsxfcn(global_handle,250) into buf

if length(buf) = 0 then exit repeat

put buf into line linecount of cd field one

end repeat

subtract 1 from linecount

end if

end openStack

on closeStack

global global_handle

if global_handle is not empty then

answer "Update Message Queue?" with "Yes" or "No"

if It is "No" then

put writexfcn(global_handle, ("x" & lineFeed)) into writecount

else

put writexfcn (global_handle, ("q" & lineFeed)) into writecount

end if

put cleanupxfcn(global_handle) into status

put empty into global_handle

end if

put empty into cd field one

play "bye.sound"

end closeStack

The opens tack handler initializes the fields and variables used by the stack. It then calls
forkpipexfcn to execute the UNIX program /usr/bin/mailx. The value returned by
forkpipexfcn is checked and then saved in a HyperCard variable called
global_ handle.

2-28 A/UX Development Tools

The handler then reads the first line of output produced by the mailx program using
fgetsxfcn. The timeout value used is 2500, which is a large enough value to allow the
child process to stan up and to fill the pipe with the first line of output. If the first line of
output begins with the word "No," there are no mail messages for this user, and the handler
plays a recorded sound informing the user of this fact, then displays an alen box in
confirmation.

If mail messages exist, the handler plays a recorded sound informing the user that he or she
has mail. It then reads and ignores the next line of output, which contains the count of the
messages. The script then loops while reading output from the child until no output is
received. The timeout value used in this loop is 250, which is long enough to fill the pipe
with the next line of output but not so long that a noticeable delay will result after the last
line is read. Each line read is placed into the next line of the field named "one," which is on
card "headers." After the last line has been read, the variable linecount is set to the
number of mail messages available.

The close Stack handler checks global handle to see if a child process exists. If so,
it asks the user whether to update the message queue. If the user responds by clicking the
Yes button, the handler exits the mailx program by sending the q command; otherwise it
exits the mailx program by sending the x command.

The handler then calls cleanupxfcn to wrap up the session, cleans up some fields and
variables in the stack, and plays a sound telling the user that it is done.

The script for field "one"

The field on the card "headers" that contains the list of messages has a script that handles
reading a selected message. To select a message the user points to the desired message
header in the list of messages and clicks the mouse button. That causes the following
handler to be executed:

on mouseUp

global global_handle,linecount,vline

put (item 2 of the clickLoc) + (the scroll of cd field one) int o
vline

divide vline by the textHeight of cd field one

put trunc(vline+.6) into vline

if vline <= linecount then

select line vline of cd field one

if the textStyle of the selectedLine is italic then

beep 1

else

put writexfcn(global_handle, (vline & lineFeed)) into
writecount

Chapter 2 Hybrid Applications 2-29

play "ZoomUp"

go to card 2

put fgetfxfcn(global_handle,250) into cd field msgx

end if

else

beep 1

end if

select empty

end mouseUp

This handler figures out which message header the user clicked (using a computation
based on the click location and the text height). It checks to see that the user clicked a
valid message by validating the message number and checking if the message header is
italicized. (An italicized message header signifies a message that the user has read and
deleted.)

After validating the message number, the handler writes to the mailx program telling it to
deliver that message. The handler then uses fgetfxfcn to read the content of the
requested message from the child process and place it into field "msgx" on the card
named "message."

The script for button "Delete"

The card named "message" has a button named "Delete." If the user clicks this button the
message being viewed will be marked for deletion. The following handler associated with
this button implements this function .:

on mouseUp

global global_handle,vline

play "empty trash (flush)"

put writexfcn (global_handle, ("d" & lineFeed)) into writecount

put empty into cd field msgx

go to card 1

select line vline of cd field one

set textStyle of the selectedLine to italic

end mouseUp

The handler plays a humorous sound to indicate that a message is being deleted, sends the
ct command to the mailx program to mark the message for deletion, and changes the
text style of the message header for .this message to italic. This lets the handler for field
"one" know that the message is no longer available for viewing.

2-30 A/UX Development Tools

The script for button "Return"

The card named "message" also contains a buuon named "Return," which is used to return
to the card named "headers" to select another message or exit the stack. The handler for
this button is shown below. It simply plays a sound, clears the field named "msgx" and
returns to the card named "headers."

on mouseUp

play "ZoomDown"

put empty into cd field msgx

go to card 1

end mouseUp

Summary

This sample application has shown in some detail the techniques that can be used to
create Macintosh-style interfaces to UNIX commands. The creative developer will be able
to take it and with minimal effort produce many more useful and sophisticated
applications using HyperCard and the A/UX system call library.

Chapter 2 Hybrid Applications 2-31

------------ -- -

.,.. ___ _

Chapter 3 · Commando

This chapter explains how you can write Commando dialog scripts to
provide a Macintosh front-end for your UNIX® applications.

Commando lets you create CommandShell command lines by selecting
controls within Macintosh dialog boxes. Controls direct the placement of
options on the command line. By selecting a particular control, a specific
option can be placed on the command line. The command lines thus
constructed are placed in a CommandShell window for execution or
optionally executed in a subshell.

This chapter begins with a discussion of dialog boxes in general; those
familiar with this subject may want to turn directly to the section
"Commando Dialog Boxes."

Chapter 3 Commando 3-1

Introduction

The Macintosh computer provides you with visual cues when you communicate with an
application, among them are the controls used in dialog boxes. Controls allow you to
change the way an application functions; when a particular control is used it can place a
specific option on the command line. The use of dialog boxes provides a consistency of
interface across applications that decreases learning times for new applications and increases
retention times for completed tasks. By implementing this interface on UNIX applications
already running on A/UX, programmers and developers can increase the effectiveness of
users working with the application.

Users who are relatively new to command-line interfaces often do not take the time necessary
to learn all the intricacies needed to make full use of a program's features. Further, they are
often frustrated in their attempts to use applications because it is not obvious what options are
available, or what the application will do if they enter a given option. This is where
Commando can help. Because Commando translates between visual controls and command­
line options, users can see at a glance what an application can do and know what options are
available. Further, Commando includes a context-sensitive help feature, so users receive an
explanation of each control's effect as they click it. Programmers can save time because they
will not have to explain the workings of the application time and time again.

Commando lets you create command lines using the controls within Macintosh dialog boxes.
This makes invocation of even complex commands much easier, since users have feedback
on what the command will do before they execute it. This also benefits occasional users of
UNIX, it frees them from having to memorize the options or arguments associated with
various commands. Even UNIX gurus appreciate this feature, since few have learned all the
options of the more than 500 UNIX commands.

The contents of Commando dialog boxes are specified in dialog scripts written according to
the Commando script language, which is discussed in detail later in this chapter. Much of the
work of laying out the dialog boxes, including automatic vertical spacing, is done for you.
This leaves you free to concentrate on the logical presentation order of the controls.

The steps you typically follow to create a Commando dialog are quite simple:

1. Copy a Commando dialog script from an existing command having similar controls. Scripts
for all the Commando dialogs are kept in directories in /mac/bin/ cmdo.

2. Modify the script to reflect the controls for your application or utility.

3. Test and debug the script.

4. Make sure the script has read-only permission.

5. Move the script to the appropriate directory in /mac/bin/ cmdo .

These steps are described in detail later in this chapter.

3-2 A/UX Development Tools

.,..----.. __

Macintosh dialog boxes

Dialog boxes provide the user with several visual cues (see Figure 3-1). The use of dialog
boxes is governed by several conventions:

■ Checkboxes allow users to select an option individually; these are the default controls in
Commando.

■ Radio buttons allow users to select mutually exclusive options.

■ Text boxes allow (or require) users to enter additional information.

■ Buttons allow users to select files or lead to funher dialog boxes.

■ Controls that cannot be selected are dimmed.

■ Figure 3-1 Schematic dialog box

D checlcboH (unselected)
[81 checlcboH (selected)
[J t:tl(H:kl>Oll (clirnrneci:1

@ radio button (selected)
O rodlo button (unselected)

I teHtboH

[button j n def11ult button H

Commando dialog boxes

All Commando dialog boxes have similar structures, though the controls for the command
they represent will be different. Figure 3-2 shows a representative dialog box for a UNIX
command. Each dialog shows the current command line being built, a box of Help
information, and buttons to send or cancel the command. Each screen also has an area to
select among the various options of the command. Each dialog box can have multiple
controls, allowing command lines to be arbitrarily complex. Further, each command may
have several nested dialog boxes; in Figure 3-2 the File type, Fonts, and More options buttons
each lead to a nested subdialog.

Chapter 3 Commando 3-3

■ Figure 3-2 Commando dialog box for the UNIX command lpr

~lpr Options

(Choose file(s) to print) Printer to print to:

D Form11t files using pr I I
D Use symbolic lints n11c~:

D Suppress burst p11ge '
D Remoue file when done

L_ .. ·-···--·--·---

D Print control ch8rncten
fl<19e w id1tl :

D Send m11II on completion ' i _______ _________ __ ;
Number of copies:

I I (File type) (Fonts) (More options)

f Commund Line (

I lpr

r···· () •nd r•qu•sti to -i hn• print,r. Uil ~ $pOCling d~mon tw print th• n-imtd
C11ncel

il♦S . (lpr I

Controls can be set up to enable other controls. In Figure 3-2, the title and page width
controls are disabled because they are used only when the option "Format files using pr" is
selected. Since this control hasn't been selected, the title and page width controls are
inaccessible. Examples of this enabling feature are shown later in this chapter in the section
"Commando Script language."

Figure 3-3 shows another dialog box, this one for the tar command. The Operation controls,
which control whether the program will read from or write to the backup media, are mutually
exclusive and thus are implemented as radio buttons. The buttons giving access to dialog
boxes containing further controls are enabled only when their corresponding radio button has
been selected.

3-4 A/UX Development Tools

■ Figure 3-3 Commando dialog box for the UNIX command tar

-tar Options-------------------~
;--- Operation --------···-·--­
i @ Write to archiue
: 0 EKtroct from archiue
i O List archiue contents
~-----------··

I
Output

I

Error

(Write options] ([H trn,:1 0111 ion~] [l.is1 0111 ion~]

f Command Line
hr q

~

:~.e~!1ch,vo . S•v• •nd rostor• filos on m•gnotie hp•. floppy disks . or Yl •n I ;,(;;;;;;;;;;;;C;;;;;a;;;;n;;;;c;;;;el;;;;;;;;~)
rehivo filo. Noto : This di•log provides only• subset of th• •v•il•ble ~ tar Il
.. tur.s for hr . Also Sff tt.. m•nu•I Hitry for t•r(1). ,'l;fl~

The Commando script language

The Commando script language helps you to create well-designed Commando dialog boxes
quickly. Commando scripts allow users to start an application by d(')uble-clicking an icon or
by invoking the application's dialog script from the command line. The resulting dialog boxes
allow the user to select various flags and options, then pass the command line to the
CommandShell for execution. By using dialog boxes developed through Commando, you can
give your applications the front-end of a Macintosh application without changing the code of
your UNIX application.

Dialog box layout

All Commando dialogs have several aspects of their layout in common: all will have labeled
Options, Command Llne, and Help boxes (see Figure 3-4). All will have button controls in the
lower-right corner of the box allowing you to cancel the displayed dialog box, or (by default)
complete your selections and send the command line to CommandShell.

The Option box of the dialog is laid out in rows and columns. There can be several rows
within a given box. You can have multiple columns within a row, and multiple rows within a
column.

Chapter 3 Commando 3-5

Within a column or row are various command controls: buttons, checkboxes, text boxes, and
radio buttons define how the command line will be built. Additional outline boxes can be
added to group similar functions visually. Optional definitions may require or enable controls.
Buttons leading to other dialog boxes can be included.

Figure 3-4 shows an Option box layout having two rows, a and b, enclosed within column 1,
and the two columns, 1 and 2, enclosed within one large row, A. The various rows and
columns are indicated by rectangles and names (in operation, Commando will not draw these
rectangles or insert the names unless you specifically direct it to). In this simple layout
example, no programmer-defined controls are shown.

■ Figure 3-4 Dialog box layout example

- s11mple Options-----------------~

row A

column I

I row b

[Comm11nd Line
SMnplP

column 2

C11ncel

R sample B

Just as all Commando dialogs have some structures in common, all scripts have some
structures in common. The beginning of the script always defines the name of the command,
in this case "sample," by using the keyword command name. The name of the command
appears in the default invocation button, in the Command Llne box, and at the top left of the
Option box (see Figure 3-4). Next, the keyword help defines the message shown in the Help
box when you are not clicking a specific control. The maximum length of a help message
varies with the length of the command name, but roughly 200 characters can be included.

3-6 A/ill(Development Tools

The remainder of the script defines rows and columns of controls. Scripts reflect the structure
displayed. If you want multiple columns within a row, column definitions are nested within
the row definition. Each definition for a particular row or column is enclosed by braces. Row
definitions begin with the keyword row, and column definitions with the keyword column.
The braces may enclose other layout or control keywords, which will further affect the
appearance of the dialog box. (Commando automatically adjusts the vertical size to include
the defined controls.) Each keyword begins on its own line in a dialog script. (Complete
listings of keywords are given in Tables 3-2 and 3-3.)

The script shown in Llsting 3-1 reflects the structure displayed in Figure 3-4 . Definitions for
the innermost rows, a and b, are nested within column 1. The definitions for columns 1 and 2
are nested within row A. This simple example does not include any control specifiers; they
would be enclosed by the braces between the beginning and end of the definition of a
column or row.

♦ Note: Both within "real" dialog scripts and in the following examples comments are
bracketed by slashes and asterisks: / * this is a comment */.Comments are used
in the following examples to point out specific features of dialog scripts. Comments can
be only one line long.

■ Listing 3-1 Dialog box layout example script
command name "sample"
help "this is sample help."
row { /* this begins row A*/

column { /* this begins column l */
row

row

)

column

{

)

{

)

/*
/*
/*

/* this begins row a*/
/* this ends row a*/
/* this begins row b */
/* this ends row b */
this ends column 1 */
this begins column 2 */
this ends column 2 */

/* this ends row A* /

The example script in Llsting 3-1 shows how the layout is theoretically arranged on the
screen. The following sections examine more realistic examples.

Chapter 3 Commando 3-7

layout examples

This section contains examples of the layout of controls. The controls themselves are not
discussed in depth; they are discussed later in the chapter in the section "Control Examples."

Row example

Figure 3-5 shows a trivial example containing only two programmer-defined controls. In this
example they are both checkboxes.

♦ Note: In the following examples a sample Commando dialog box is shown first, and the
dialog script that produced it is shown next.

■ Figure 3-5 Single row dialog box

[picker Options
O Pick a card

~~ommand Line
L1ck•r

Help

D Pick a name

This lir-.. cont•ins infor~tion on ttw nihr• of tM comm•nd .

'--------------------'

Cancel

picker B

The dialog script that produced this dialog is shown in Listing 3-2.

■ Listing 3-2 Single row dialog script
command name "picker"
help "This line contains information"

"on the nature of the command."
row

option name "Pick a card"
prefix "-p"
help "[-pl randomly pick a card."

/*
/*

/*
I*

command name */
help message */

begin only row */
first control */

option name "Pick a name" /* second control*/
prefix "-n"
help "[-n] randomly pick a name."

/* end of row* /

3-8 NUX Development Tools

A line-by-line dissection of this script shows several general points worth noting:

■ The first line,

command name "picker"

defines the command name. As mentioned previously, it is automatically put on the
command line being built (in the Command Line box of Figure 3-5), in the command
button (at the lower left of Figure 3-5), and in the Options label at the top of the dialog
box.

■ The second and third lines,

help "This line contains information"
"on the nature of the command."

define the help message for the command displayed in the bottom Help box. The message
can span several lines, which are concatenated when the dialog is constructed. The help
message for the command is displayed whenever the mouse button is up.

■ The fourth line,

row {

specifies construction of a row. Controls between this point and the closing brace (on the
last line) will all be placed on the same row.

■ On the fifth line,

option name "Pick a card"

the option name for the first control defines how the control will be labeled.

■ On the sixth line,

prefix "-p"

the prefix line defines what characters are placed on the command line being built
when this control is selected.

■ On the seventh line,

help "[-pl randomly pick a card."

the help line following an option name keyword defines what will appear in the Help
box when the pointer is positioned over this control and the mouse button is down.

■ The eighth through tenth lines;

option name "Pick a name"
prefix "-n"
help "[-n] randomly pick a name."

specify another control; each control consists of at least the option name, prefix, and a
help message.

■ The eleventh line,

Chapter 3 Commando 3-9

has the closing brace for the first row.

Commando automatically divides a row into columns in order to space the controls. In Figure
3-7 there are two controls, so two columns are used for spacing. This spacing can affect the
length you choose for control names.

Multiple row example

Figure 3-6 shows a dialog box with different rows having different numbers of controls. The
first row contains the three controls: "Pick a card," "Pick a name," and "Pick a spot." The
second row contains the two pop-up menus Output and Error.

This example shows what the dialog box looks like if the pointer is positioned on the "Pick a
card" option and the mouse bunon is down. The control shows that it is selected (there is an x
in the checkbox), the -p prefix shows in the Command Line box, and the help box displays
the message associated with that option. When the mouse button is released, the control
remains selected and the prefix remains in the command line being built, but the help
message will revert to the message for the command itself.

■ Figure 3-6 Multiple row dialog box

~picker Options-------------------.
181 Pick II card
Output

f Command Line
p1ek,r -p

D Pick II name

Error
I

D Pick II spot

I

~I:~~" hu inform•tion on ttw option [-p) r•ndomllj p;ck • c.,.d . I #[;;;;;;;;;;;;C;;;ll;;;nc;;;e;;;I ;;;;;;;;;~]

I [picker B .__ ________________ __,

3-10 A/UX Development Tools

Figure 3-6 and Listing 3-3 show a new point: the type of control displayed in the dialog
changes when the keyword within an opti on name section is changed. Note that the
options within the shaded area of Listing 3-3 use the keywords outpopup and errpopup.

These keywords create different kinds of controls than those created by the default checkbox.
The various types of controls are covered in depth in the section "Control Examples." These
examples again demonstrate the automatic building of columns within rows. The first row has
three controls and is displayed in three columns, while the second row has two controls and
is displayed in two columns. The vertical spacing is again adjusted automatically to allow
room for the controls.

■ listing 3-3 Multiple row dialog script
command name "picker"
help "This line contains info rmati on"

"on the nature of the command . "
r ow

option name "Pick a card"
prefix "-p"

/ * c ommand name* /
/* help message* /

/ * s tart fir s t r ow */
/ * first c ontrol */

help "This now has information on the option"
"[-pl randomly pick a card . "

row

option name "Pick a name" / * second control* /
prefix "-n"
help ""This now has information on the option"

"[-n] randomly pick a name."
option name "Pick a spot" / * third control* /

prefix "-s"
help ""This now has information on the option"

"[-s] randomly pick a spot."
/* end first r ow* /
/ * start second row* /

firs:t control. *I

·t••········· /Qpf#.qf(9c!.me •••·•~~froi '.'\\··•· ·•··• · : •¢tJ£Mfa4P J · ·
/* end second row* /

Column example

The following examples (Figure 3-7 and Listing 3-4) demonstrate the explicit definition of a
column. Multiple columns can be defined within a row, with the horizontal spacing divided
equally by the defined number of columns. Multiple columns containing different numbers of
controls can be contained within the same row. Commando automatically adjusts the vertical
height of the dialog box based on the number of controls in a particular column (within limits,
of course).

Chapter 3 Commando 3-11

■ Figure 3-7 Multiple column dialog box

-picker Options---------------------,
0 Pick II c11rd
181 Pick II n11me
O Pick II spot

Output

r;;comm11nd Line
I picktr -n ·st -ct

Error

181 Pick II street
181 Pick II city
D Pick II st11te
D Pick II country

~=~~""''',,.,,., ~..,M. I [C11ncel]

!.__ ___________________ __._ n'll;;;;;;=-p-ic_k_e_r=..#B

In the upper shaded area of Listing 3-4 the keyword column is used within the first row to
put all three controls in the same column. The unshaded area between the shaded areas
contains a dummy column, one with nothing between its braces; it is used to create the blank
column. The lower shaded area starts another column specification, this time putting four
controls in the column. Commando again takes care of adjusting the dialog box's vertical
spacing.

■ listing 3-4 Multiple column dialog script
command name "picker"
help "This example demonstrates columns."

/* command name*/
/* help message*/

column {)

3-12 A/UX Deve_lopment Tools

* start first row*/
start· first cqluritn *l .
/*' ·first c_ontrol */<

secon_d control *I ·

§pd first . colµmri */
/* dummy second column for spacing* /

----------- ----------- ----------- -- ---- . .

row
option name "output"

outpopup
option name "error"

errpopup

Nested dialog box example

/*
/*

/*

start third column*/

control*/ . .

. . . :

tl1.b:d control .·*/

... fourth control */

third column */
end first row */
start second row * /

/* first control * /

I* second control */

end second row */

Figure 3-8 shows the next step in changing the structure, the addition of a bunon leading to a
further dialog box (nested dialog boxes are also referred to as subdialogs). Here a new dialog
named "Redirection" was added to the first dialog box. Clicking the Redirection bunon leads
to the subdialog, shown as the second dialog of Figure 3-8.

Note that the second dialog box (the lower box shown in Figure 3-8) has a Continue bunon
that returns you to the first dialog box. Multiple nested dialog boxes can be specified (see
Figure 3-2, "Commando Dialog Box for the UNIX Command lpr").

Chapter 3 Commando 3-13

■ Figure 3-8 Further dialog example

-piclcer Options----------------------.
D Piclc II c11rd
D Plclc II n11me
181 Piclc a spot

f Command Line
p1ck11r -s

(Redirection]

rH elp I[.. ;;;;;;;;;;;;;C;;;;a;;;;n;;;;c;;;;e I;;;;;;;;;;;;.] This •x•mplP dPmonstr•tu columns . ,,_

n picker B ._ __________________ __.

locommand Line
L1ckPr -s

Error

Help------------------.
This subdi•log •llows you to rPdirPct tho comm•nd output .

._ __________________ __.

Cancel

n Continue H

The shaded area of Llsting 3-5 shows the addition of a button leading to a further dialog box.
Here a new dialog named "Redirection" was added to the original dialog box. Note that the
button to access this further dialog was automatically sized to hold the name.

3-14 A/UX Development Tools

■ listing 3-5 Further dialog script
c ommand name "picker"
help "This example demonstrates columns."

/ * command name */
/ * help message* /

row /* start first row*/
column /* start first column* /

option name "Pick a card"
prefix "-p"
help "['-p] randomly pick a card."

option name "Pick a name"
prefix "-n"
help "(-n] randomly pick a name."

option name "Pick a spot"
pref i x "-s"
help "(-s] randomly pick a spot."

) / * end first col umn */

til~}~gi::f,$#[~ ;, ~ecti£e ct.ion;;
6.~:J;p /~T~~~ subdialcig allows · you to · " ·

i'-i edir~ct t he command· out put: ... fg; ;it? •··.•·> \:<·>·- . : .

·•••••••••:•••••••••••••••fill~•l~~~~iii r·•~utput•···
•••••·••••> •• $~~~ el r~t~ t·~:r¢r'.•••
········•·i•·····•• :••1•~ ••·•••••••••••••••~t fP:9P.u.P•·••••·•·•···.·•··

Control examples

/* end first r ow */
/ * start second dialog* /
/* help message*/

/*: start f .irst r:ow */

ft .end first . row: */

Places in a dialog where the user can make a choice are called controls. These include
checkboxes, radio buttons, text boxes, and buttons. Keyword specifiers define all controls
available from the dialog box. The type of control is usually specified (a checkbox is the
default). In addition, enabling and requirement dependencies can be defined (see the section
"Dependencies" below). The various types of controls are discussed in the following sections.

Checkbox

This is the default control type, a square box that the user either selects or deselects by
clicking it. The user selects each checkbox individually. Figure 3-9 shows examples of this
type of control. ·

Chapter 3 Commando 3-15

■ Figure 3-9 Checkbox example dialog

[picker Options
D Pick o cord

rCommond line
p1ckor

D Pick o nome D Pick a spot

rH e Ip I[~ !!!!!!!!!!!C o!!!n!!!c e!!!I !!!!!I!!' This •x•mpl• c!Pmonstr•t.s ch.ckbox.s. F
n picker B ,.___ _________________ __.

Listing 3-6 shows the script that produced the Checkbox example dialog; the shaded area
contains a representative checkbox definition. You define the option name , prefix, and
help specifiers for every checkbox. Place the text following each of these keywords between
double quotation marks. The maximum number of checkboxes in a column is ten.

■ Listing 3-6 Checkbox example script
command name "picker"
help "This example demonstrates"

"checkboxes."
row

'. g#;tt~Ws·Jg:· > •· ••> ·.
') h~:lip,}\£±:PF ra.:r1.doritly· pick ··a . card. I'

option name "Pick a name"
prefix "-n"
help "[-n] randomly pick a name . "

option name "Pick a spot"
prefix "-s"
help "[-s] randomly pick a spot."

Radio buttons

Radio bunons are similar to checkboxes but provide users with mutually exclusive controls;
an example is shown in Figure 3-10. Users see associated radio bunons aligned in columns; a
box, referred to as a named box, usually surrounds radio bunons to visually indicate that they
are related. Commando automatically selects the first radio bunon in a set for the user.

3-16 A/UX Development Tools

Due to an intentional programming error, one of the labels is too long, and has extended
outside the named box. This demonstrates that you must choose control labels that will fit in
the column they are in.

■ Figure 3-10 Radio button example dialog

-picker Options--------------------,
,--- Pick one of these: -----,
i@Plckacard '
: O Plclc o nome ,
: O Piclc o spot on the :"op

f Commond Line
ptck•r -p

The shaded area of listing 3-7 shows a definition for a set of radio buttons. The definition
starts with the keyword radio but tons and encloses the set of individual controls in
braces. Specify the keywords option name, prefix, and help for each button. Use a
box to visually indicate the grouping of the radio buttons. To do this, use the keyword name

(for a named box, as shown in listing 3-7) or the keyword box (for an unnamed box) within
the radio button definition. Commando automatically aligns radio buttons into columns. A

maximum of seven radio buttons can be grouped in a set. By default, Commando selects the
first radio button in a set, so make the first control the one that the user will most often
choose.

Figures 3-16 shows that one of the labels is too long. You can a void this by using concise
labels or wider columns.

■ listing 3-7 Radio button example script
command name "picker"
help "This example demonstrates"

"radio buttons."
row

column{} /* dummy column for spacing* /

Chapter 3 Commando 3-17

column {)

Text boxes

set .. b.f radio but tons * /
a named grouping box*/

/* dummy column for spacing*/

A text box allows the user to enter text to be used in the control string. Text boxes are the
width of the current column. Figure 3-11 shows an example of the use of these text input
types. Note that when an input string contains blanks, Commando automatically encloses the
string in single quotation marks to avoid confusing the shell. (For example, see the name
Wally Eldridge shown in the Command Line box .)

■ Figure 3-11 Text box example dialog

-game m er p ions

Before you play, the GameMaster needs to know:

Your nome: Your oge: Gomes desired:

I Wally Eldridge I I I 7 I NerdCity Q
Teenage Mutants

0

Command line--------------------~
gam•find•r- -N -...,.1111 Eldridq•· -•17 -TNwdCity -rr .. nag• Mutants·

'

Help I [cancel]
This •x•mpl• dtrnonstr-at•s t,xt boxos . . . _ f gamefinder H ~------------------~

3-18 NUX Development Tools

.--.... _

Listing 3-8 shows the script used to create the dialog in Figure 3-11. A5 with a checkbox,
specify the keywords option name, prefix, and help for each text box. Use one of the
keywords string or stringlist to indicate the type of data to be input by the user. The
keyword string allows entry of a single line of text, while stringlist allows entry of
several lines, each of which is prefaced on the command line with the defined prefix. Text
boxes are the width of the current column. You can put a maximum of three string

controls in a column. You can put a maximum of two stringlist controls in a column.

As mentioned previously, when an input string contains blanks Commando automatically
encloses the string in single quotation marks to avoid confusing the shell. Putting the
keyword dontquote on the next line after the keyword command name will turn off this
quoting feature for the entire dialog (this variant is not shown).

♦ Note: Some UNIX commands insist that no spaces come between an option and its
argument on a command line. In these cases, include control characters in the prefix
definition to remove the spaces normally inserted. This is indicated in the text by a
circumflex (A) before a character. For example, AY indicates CONTROL-Y, and is placed
just after an option to remove the space between the option and its argument.

6 Important Control characters do not normally print well; consequently printouts of
your dialog scripts may not show all the characters that are actually there.
A circumflex followed by a letter is not a substitute for a control
character. 6.

Listing 3-8 shows various ways that text input is translated to the command line. The code in
the top shaded area of the figure formats input text on the command line with a space
between the input text and the prefix. The code in the unshaded area between the shaded
areas defines a control having no space between the prefix and the text because of the
CONTROL-Y at the end of the prefix. You can also remove the space before a prefix by using a
CONTROL-H before the letter of the option. Each of these control characters can be used only
once per option, though both can be used on a single option. The code in the bottom shaded
area of the figure shows how you can put several arguments having the same prefix on the
command line, using the keyword stringlist rather than string.

Chapter 3 Commando 3-19

■ Listing 3-8' Text box example script
command name "gamefinder"
help "This example dem<,:mstrates text boxes . "
row (

option name "Before you play, the GameMaster needs to know:"
text /* first control* /

}

row(} /* dummy row for spacing*/

.. c:ont ro:l · */:

option name "Your age:" /* third control*/
prefix "-#AY" /* use Control-Y for spacing */
help"[-#) Your age determines the play level."
string

~c,~::■f [::;::1:;~~o;:;:-;::a~= a;;~~:;/ :ontrol */

Text

listing 3-8 also shows the use of the keyword tex t on the unshaded line labeled "first
control." This control does not allow input, but simply places text in the dialog. Unlike
controls that allow input, you don't specify the keywords prefix or help.

Buttons

With dialog buttons the user can

■ open further windows that allow access to files on which to operate and directories in
which to save files

■ open a nested dialog box, allowing choices of additional options

Dialog buttons are different from radio buttons, which select between mutually exclusive
actions. Because they have a different function, they are a different shape. Figure 3-12 shows
examples of both types of dialog buttons; their names indicate their purpose: If the user clicks
the "Save a file" button a second dialog box appears (see Figure 3-13) and shows the standard
Macintosh file dialog box for selecting a new filename. After the user selects a file , the original
dialog box reappears (see Figure 3-14; note the filename in the Command Line box). If the
user clicks the "Redirection" button, the dialog shown in Figure 3-15 comes up, allowing a
choice of redirection options.

3-20 A/UX Development Tools

- - - -------- - ·-----·- -

■ Figure 3-12 Button example: Initial dialog box

-sauer Options---------------------,

r (Req~:;: :-;~;:····-···-i···-1

JT~i~~~•mpl• CHmonstr•tos both typos of buttons . [

I (

■ Figure 3-13 Button example: Save a file dialog box

lesi bin I
D <l(C1(011l

D adtl
D ar
[.} <1 ~

L} <HU

l°.) tld~l~IHllllP

Saue a file:

I modem.test

Q

II
mm
lilil.=
0

=I

E_j1i c1

Oriue

(OK)
Cancel

[Redirection]

Cancel

n

Chapter 3 Commando 3-21

■ Figure 3-14 Button example: Save a file control was selected

-s11uer Options
,·• Required

! I(Soue II File l !
' i ..

(Redirection)

f Commond Line
~~v•r -s /bw,/mod.,,, .t .. t I
-Help (Concel l This •x~mpl• ci.monstr~t.s both t'ip•s of buttons .

(snuer J

■ Figure 3-15 Button example: Redirection subdialog box

output ["""""'""" Error

f:Commond Line
I savor -s /bw,/mod.,,, .t .. t

With dialog buttons you can call file dialogs or call a subdialog. With dialog buttons you don't
have to use the keyword prefix, but it is good practice to always use the keyword help

with them, though it is not required. You create file dialog buttons by putting one of the
following keywords after the keyword option name:

file filelist newfile directory dirlist dirsandfiles filesanddirs

The purpose of each keyword is listed in Table 3-1 . (A complete listing of keywords can be
found in Tables 3-2 and 3-3.)

■ Table 3-1 File dialog keywords

3-22 A/UX Development Tools

Keyword

file

filelist

newfile

directory

dirlist

dirsandfiles

filesanddirs

Description

Presents the single file choice menu.
Presents the file list choice menu.
Presents the new file creation menu.
Presents the single directory choice menu.
Presents the directory list choice menu.
Presents the file/directory choice menu. Same as filesanddirs.

Presents the file/directory choice menu. Same as dirsandfiles .

To redirect either the standard or error output, use the keywords outpopup and
errpopup. You can use outpopup alone; however, to use errpopup, you must also use
outpopup.

To create dialog buttons that open a subdialog box, use the keyword dialog name . You
must place this keyword after the close of a row definition (as is shown in the lower shaded
area of Llsting 3-9). Define the name of the button with a text string (between double
quotation marks) following the keyword. You can put a maximum of six buttons in a column.

Llsting 3-9 shows the script that produced the dialogs in Figures 3-12 through 3-15. The first
button in the script (in the upper shaded area of the figure) calls a file dialog, in this case to
create a new file. The first button control is followed by two dummy columns to ensure that
the button does not extend the entire width of the dialog. The second button (in the lower
shaded area of the figure) opens a subdialog whose only components are the redirection pop­
up menus.

These figures also illustrate the effects of a new keyword, required, found within the first
control. The keyword re qui red has the effect of disabling the command button until a file
has been selected (note the difference in the appearance of the button named "saver"
between Figures 3-20 and 3-22). The keyword required can only be used on the first
dialog of a script. The keyword name is used to place a box around the required control to
notify the user to complete this control; this keyword has been seen before. These keywords
are discussed further in the section "Dependencies."

Chapter 3 Commando 3-23

■ listing 3-9 Button Example script
command name "saver"
help "This example demonstrates both types of buttons."
row {

}

column {}
column {}

Dependencies

/* dummy
/* dummy

column for spacing
column for spacing

/*s~cond button

*/
*/

*/

Controls can be selectively enabled, depending on the selection state of some other control.
Controls that are disabled appear in gray type (and are said to be dimmed); once the
enabling dependency is satisfied the control appears in black type. Users also can be required
to select an option.

Figure 3-16 and Figure 3-17 show a control dependency example. In Figure 3-16, the "Pick a
card" control is selected (it is the default) so the "Card name" control is enabled, while the
"Suit'' controls are disabled. In Figure 3-17, this order is reversed; the "Suit "control is now
enabled, while the "Card name" control is disabled.

3-24 A/UX Development Tools

■ Figure 3-16 Dependencies example: First control selected

cardfinder Options---------------------­
=··· Pick one of these: ········~ Cord nftme:

I @ Pick ft card 1 1
I O Pick ft nftme I_ ________ ...,
~ .. 1

lccommftnd Line
I cardfinder -p

r~i: ~~ample demonstrates enabling . I ~[!!!!!!!!!!C!!a!!n!!c!!e!!I !!!!~

I [cardfinder ,__ ______________________ ___,

■ Figure 3-17 Dependencies example: Second control selected

cardfinder Options---------------------­

=··· Pick one of these: ········~ C<1nJ Tl<Hne ; ,··· Suits •···························· ·· ·················
l@ Black

l QRed 1. ~ -~: ~ :_:. ~: :e_·········..l [:: ~~-:~·:·:: : . :· J
··· ·····

lccommand Line
I cardfinder -n -b

.

jT~i:~~ample demonstrates enabling . 1 ~[--~-~-~-~-~C~a~n~c~e;;;I;;;;;;!!

I [cardfinder_ _______________________ __,

Chapter 3 Commando 3-25

Controls without dependencies are enabled by default; controls with dependencies are
disabled by default. To disable a control, simply make its enabling dependent on another
control by using the keyword enables .

You can enable controls in two ways:

■ Specify the prefix that must be in effect (showing in the Command Line box). The prefix
must be identical to that used in the control specification, including any control characters
within the prefix.

■ Specify the control's option name (the quoted text following keywords option name or
name). For example, radio buttons are enabled as a set by enclosing them in a named box
and putting the box's name in double quotation marks after the keyword enables.

In order for enabling dependencies to work, all dependent controls must be in the same
dialog box. If necessary, place dependent controls together in a subdialog and enable a
button that allows the user access to that subdialog.

You can require that users select an option by using the keyword required. The keyword
required can be used only on the first dialog of a script. It is helpful to the user to enclose
any required controls in a box named "Required" (see the examples in Figures 3-20 through 3-
24).

Llsting 3-10 shows the script used to created the dialogs shown in Figures 3-16 and 3-17. The
first control enables the third control (see the first and third shaded areas of the figure) , while
the second enables the grouped fourth and fifth controls (see the second and fourth shaded
areas of the figure) . The first control enables a single control by prefix; you can use this
method for all kinds of controls. The second control enables the grouped controls by name.
Use this method for specifying a set of radio buttons, for individual buttons, and for controls
with blank prefixes.

3-26 A/illC Development Tools

.------...._

■ Listing 3-10 Dependencies example script
command name "cardfinder"
help "This example demonstrates enabling."
row {

column
name "Pick one of these:"
radio buttons {

option name "Pick a card" /* first control* /
prefix "-p"

"-pl This allows selection of a card."
.'1-'<::'-Yi• ·•.·./ Vi en~~le a .. singl.e control, *·/

option name "Pick a name" /* second control*/
prefix "-n"
~~lp "[-n] Select a name."

/r ~~able a group of controls*/

option name "Card name:" /* third control* /
? ' : .P#~@t¥::\HifX:1t••··•··

help "[-cl This enters the card name."
string

radio buttons {
.J ~~@$ Jf~~i)iit /• .

/*setup a group of controls*/

option name "Black:" /* fourth control*/
prefix "-b"
help "[-bl Select from black suits."

option name "Red : "
prefix "-r"
help "[-r] Select from red suits."

}

/* fifth control* /

The order that options appear on the command line can be specified, in reverse order, by
using the keywords lastl, last 2, and so on. An option with the keyword lastl will
appear last on the command line. An option with the keyword last2 will appear next to
last, and so on. This feature can be used within a dialog box, and is nested across dialog
boxes. For example, the lastl specification of an option in the first dialog box will be put
on the command line after an option with the lastl specification in any subdialog boxes.

Chapter 3 Commando 3-27

Boxes

Outline boxes can be defined by using the keywords box or name. Each draws a box around
a control or group of controls; the keyword name inserts a name at the top left of the box to
identify its contents. The name can be as long as you like. However, if it is longer than the
box it will overwrite the next column. Named boxes can be used to enable a group of radio
buttons (see Figures 3-16 and 3-17, and Listing 3-10) The width of the boxes is the same as
that of the current column. You can often make a dialog look better by inserting blank
columns to reduce the width of the boxes (see Figures 3-7 and 3-10).

Leniencies

Commando is fairly forgiving when it comes to specifying column definitions. It is good about
automatically creating columns, and usually the first column specification in a multiple
column set does not need to be explicit. Radio buttons are automatically put into their own
column. Commando is also reasonably well behaved as long as you don't try to put more than
seven controls in a column (explicit or implicit).

Keywords

The following tables list the keywords used in Commando presented in two ways. The first is
grouped by function, the second is a alphabetic listing.

■ Table 3-2 Commando keyword reference: by function

Keyword Description

command name "name"
help "help string"

row { }

column

option name "name"
prefix "prefix string"
help "help string"

radio buttons {

Sets the name of the command in the invocation button.
Sets the help message for this section.

Contains the contents of a row.
Contains the contents of a column.

Sets the name of checkboxes and/or buttons. Required for each control.
Adds prefix string to the command line.
Sets the help message for this section.

Defines a set of radio buttons. The braces enclose the set of controls.

3-28 A/UX Development Tools

dialog name "name"
outpopup

errpopup

dirsandfiles

directory

dirlist

filelist

file

filesanddirs

newfile

required
enables "specifier•

disabled

dontquote

string

stringlist

Sets the name for a nested dialog box and the button to access it.
Presents the standard output redirection menu. Required if errpopup is
use.d.
Presents the standard error redirection menu.
Presents the file/directory choice menu. Same as filesanddirs .

Presents the single directory choice menu.
Presents the directory list choice menu.
Presents the file list choice menu.
Presents the single file choice menu.
Presents the file/directory choice menu. Same as dirsandfiles .

Presents the new file creation menu.

One of the controls referenced by this keyword must be selected.
Enables other controls to be used. The control to be enabled is specified by
its prefix.
Obsolete keyword.

Tums off the quoting mechanism for text input. Affects all text fields in a
dialog script.
Allows string input. The input box string width is the width of the current
column.
Allows several string inputs . The input box string width is the width of the
current column.

■ Table 3-2 Commando keyword reference: by function

Keyword Description

text Displays the control name as text.
number Obsolete keyword.

1ast1 .. n Specifies the order of options. lastl indicates the last option on the
command line. last2 is the next-to-last, and so on.

box Puts an outline box around a control or group of controls.
name Puts a named outline box around a control or group of controls.

■ Table 3-3 Commando keyword reference: alphabetic

Chapter 3 Commando 3-29

Keyword

box

column { }
command name "name"
dialog name "name"
directory

dirlist

dirsandfiles

disabled

dontquote

enables "specifier•

errpopup

file

filelist

filesanddirs
help "help string"
lastl .. n

name

newfile

number
option name "name"
outpopup

prefix "Prefix string"
radio buttons { }

required

row { }

string

text

Description

Puts an outline box around a control or group of controls.
Contains the contents of a column.
Sets the name of the command in the invocation buuon
Sets the name for a nested dialog box and the button to access it.
Presents the single directory choice menu.
Presents the directory list choice menu.
Presents the file/directory choice menu. Same as filesanddirs.

Obsolete keyword.
Tums off the quoting mechanism for text input. Affects all text fields in a
dialog script.
Enables other controls to be used. The control to be enabled is specified by
its prefix.
Presents the standard error redirection menu.
Presents the single file choice menu.
Presents the file list choice menu.
Presents the file/directory choice menu. Same as dirsandfiles .

Sets the help message for this section.
Used to specify the order of controls. lastl indicates the last option on the
command line. last2 is the next-to-last, and so on.
puts a named outline box around a control or group of controls.
Presents the new file creation menu.
Obsolete keyword.
Sets the name of checkboxes and/or buuons. Required for each control.
Presents the standard output redirection menu. Required if errpopup is
used.
Adds prefix string to the command line.
Defines a set of radio buuons. The braces enclose the set of controls.
One of the controls referenced by this keyword must be selected.
Contains the contents of a row.
Allows string input. The input box string width is the width of the current
column.
Displays the control name as text. ·

■ Table 3-3 Commando Keyword Reference: alphabetic

Keyword Description

stringlist Allows several string inputs. The input box string width is the width of the
current column.

3-30 A/UX Development Tools

Creating Commando dialogs

Creating new Commando dialogs is a three-step process. First, you write a new script. This
usually involves copying a script that has controls similar to the ones you want to use, then
modifying it to fit your application. Second, you test, and if necessary debug, the script. Third,
you make the script read-only and move it to one or more places so it can be invoked by all
the users on the system. Optionally you can compile the script into a resource.

As an introduction to the process of creating dialogs, the following section examines how
dialogs are invoked.

Invoking Commando Dialogs

To invoke Commando from the CommandShell, you can use two methods. Enter

cmdo commandname

on the command line, or type

command name

on the command line and choose Commando from the Edit menu (the keyboard shortcut for
this method is commandname C0MMAND-K).

When Commando starts, it first searches the path listed in the variable $CMDODIR for
resources, then for dialog scripts. After that, Commando searches for resources, then dialog
scripts, in the directory in / mac/ lib/ cmdo having the same first letter as the command
name you are invoking. Finally, Commando searches your $PATH variable for resources (this
may result in a long search if $PATH includes many directories).

Make sure that the commands on the command line created by your dialog script are
locatable by the shell. The normal command search path is contained in the SPATH shell
variable. By default this variable is setto /bin: /usr /bin : /usr / ucb: / mac / bin:,

though this may be changed by system initialization files (such as . profile or . login).

Commando is also invoked when you double-click a UNIX application, utility, or shell script
icon. This method is not efficient when you are testing dialog scripts.

Chapter 3 Commando 3·31

Writing Commando dialogs

Although the Commando script language is reasonably straightforward, it is not foolproof.
The Commando scripts that reside on each A/UX system (in /mac/ lib/ cmdo/* /*) have
all been debugged and tested. Consequently, you can save time if you simply modify a script
that already exists instead of trying to write your own script from scratch. This is especially
true because some scripts use nonprinting control characters to enable controls, and such
scripts are sometimes difficult to debug from printouts.

Testing Commando dialogs

Commando dialogs are easy to test, even when the script file is still open. When Commando
is searching for script files , it searches the directories listed in the section "Invoking
Commando Dialogs." Therefore, once you have written your script, simply place it in the
directory within /mac/ lib/ cmdo that has the same first leuer as your script's name. The file
should have read permission for your users. If you've modified a file that already existed, you
probably won't need to change the permissions. To set the permissions so the file is readable
by everyone, use the command line

chmod 4 4 4 scriptname

If you are using TextEditor to edit a Commando file, simply save the file (you don't have to
close it) in the appropriate directory within /mac/ lib/ cmdo. Commando will interpret and
run the last saved version of your script. If it doesn't perform or look quite right, simply edit
the file, save it again, and reinvoke the script using one of the command lines discussed
earlier in this chapter.

Compiling Commando dialogs

Compiling a script into a resource file allows you to customize its appearance. Various
auributes, such as the size of dialog boxes and the shape of controls, can be modified using
the Commando resource editor available in MPW.

To create a Commando resource use the command line

cmdo scriptname -r -n -o outputfile

This creates a resource file with the name outputfile. Move the file into a directory common to
user's $PATHS, such as /usr /bin, so all users can access it. After the file is moved, it must
be renamed to scriptname so Commando can locate the source dialog.

3-32 A/UX Development Tools

----~- -- -- ----------

The command, the script, and the compiled resource must all have the same name (the
resource file has a leading %).

Dialog design guidelines

This section offers general guidelines to assist you in planning your Commando dialogs . It is
not meant to be authoritative, but does present what has been found to work best. If the
needs of your applications demand it, you are free to do anything you want, but keep in mind
that one of the things that makes the Macintosh so easy to use is its consistency of interface.
Your design goal is to help users find choices where they expect to find them, instead of
having to hunt for them. You can find many helpful hints in Human Interface Guidelines: The
Apple Desktop Interface.

Dialog layout guidelines

Generally, it should be easy for the user to see what information is required before the
command can be run and what controls are currently selected.

When a script calls for nested dialog boxes, all required arguments, as well as the most
frequent or useful arguments, should be on the first dialog box. In general, try to reduce the
number of dialogs to a minimum. Ideally, the user should be able to see everything on one
dialog, so that it is immediately clear from the dialog box which controls have been chosen.

The layout of controls within a dialog should correspond to the direction people normally
read. Required arguments, if any, should be distinguished from optional arguments and
presented in the first part of the first dialog page. The most important or frequently used
arguments should follow after the required arguments. For example, in France people usually
read left to right and top to bottom, so the layout of the dialog and controls should follow this
pattern.

Use boxes to group similar items. Boxes can separate columns, portions of columns, or
clusters of buttons. Boxes do not have to be labeled, though labels are often useful.

Buttons to select files or directories (or both) should be placed on the first dialog page when
possible. Use the keywords lastl, last2, and so on to permit this arrangement.

Chapter 3 Commando 3-33

Normally, each dialog item corresponds to a single control or argument. In some cases,
however, a command may have one or more cornroonly used group of controls. In these
cases, some of the dialog items may correspond to control clusters. Note that the user should
still be able to select all controls individually.

Use the keyword string if the possible values are infinite. If the number of values is a small,
finite number, try to use radio buttons.

There are several standards for subdialog names:

■ Subdialogs containing only Output and Error pop-up menus should be labeled "Output &

Error."

■ If a dialog contains only one subdialog of unrelated options, that subdialog should be
labeled "More options." If the options are closely related, that relationship can be used to
name the subdialog.

■ If a dialog contains several subdialogs containing unrelated options, these subdialogs
should be named "Options 1," "Options 2," and so on.

Dialog aesthetics

Try to avoid mixing control types (checkboxes, radio buttons, text boxes, and buttons). Try to
make the dialog page look balanced. With few exceptions, dialogs look best with two
columns per row. Use empty columns for spacing to prevent a column from appearing too
wide.

Don't juxtapose unrelated sets of radio buttons. Remember that the first radio button in a
cluster will be turned on by default. Take care to choose a default that is reasonable. It is
often a good idea to add a button to a cluster of controls to represent the default action.

Descriptive information

The text associated with a dialog item should be understandable by the UNIX-naive user
whenever possible. Options should be described in terms of the results that the user will see,
rather than in terms of the underlying UNIX concepts.

Filename arguments should be specified by their function or role. For example, use "Files to
be searched" rather than "Input."

Always try to show the effects of defaults. One example is to label the pop-up menus for
output files "Output to" so that the default behavior is displayed on the screen.

3-34 A/UX Development Tools

- ------

Put useful information on the screen if it doesn't lead to clutter. For example, the UNIX
command date takes as an argument a string formatted mmddhhmm [yy l . This format is
small, useful, and easy to forget. lt can be placed just above the text box where the user can
refer to the format when entering the date. Examples of more extended information should be
placed in the help message.

The help messages should expand on the text in the upper portion of the dialog box to
provide information and, where possible, examples. Don't simply repeat the control text for
the help message. If you can't think of anything else to add, rephrase the control text in case
the user didn't understand the original text. When the user has to type in something, give
examples of common usages.

Chapter 3 Commando 3-35

Chapter 4 dbx Reference

This chapter describes the debugger ct.bx, a tool for source-level
debugging and execution of C programs under A/UX.

The debugger operates by running the program being debugged as a child
process. The debugger maintains control of the program being debugged
by means of system hooks available through the pt race(2) system call.

4-1

Using dbx

The dbx debugger can be used to symbolically debug all A/UX applications. It is
particularly useful if the application makes calls to the A/UX Toolbox. The debugger can
examine several kinds of code.

For specially compiled C code dbx can provide you with

■ examination of the symbol table

■ variable, expression, and condition tracing

■ function and procedure tracing

■ source-line tracing

■ signal trapping

■ . variable assignment

■ step-by-step execution

■ variable- and expression -printing capabilities

■ real-time editing capability

The debugger dbx also has the capability of examining object code at the machine­
language level. These machine-level facilities of dbx can be used on any program. The
ability to examine machine language is useful when you don't have the source code for a
program, or when you want to inspect compiled assembly code to see exactly what the
compiler and optimizer did to your source.

The other debuggers available with A/UX are

adb

. MacsBug

sdb

This machine-level debugger is useful for debugging A/UX applications
that do not call the A/UX Toolbox.

This symbolic debugger works on Macintosh applications. It is part of
the Macintosh Programmer's Workshop, included with A/UX Developer's
Tools .

This symbolic debugger is useful for debugging A/UX applications that
do not call the A/UX Toolbox. Like dbx, sdb allows you to interact with
the program at a source language level. Symbolic access to all variables is
available, and procedures may be called directly from sdb. This debugger
works on source code compiled with the A/UX compilers c B 9, cc , and
f77.

4-2 A/UX Development Tools

..,..-,....,,_

dbx syntax

The command-line syntax for dbx is
dbx [-rl [-il [-kl [-I dir] [-c file] [objfile [coredumpJ l

The objfile is an object file produced by the c B 9, cc, or f 7 7 compilers. In order to use
symbolic debugging, the object file must have been created using the -g compiler
command option. Object files created with the -g option contain a symbol table that
includes the names of the all the source files translated by the compiler to create it. These
files are available for perusal while using the debugger. Files created without the -g option
can be debugged, bu the symbol table inforamtion will not be available. Object files
created with the -c option are intermediate relocatable object code files, which can be
examined but not run. (Such files are called "dot-oh" files (. o) after the extension
appended to the filename.)

♦ Note: Optimized code cannot be symbolically debugged with dbx; the code
optimizer is disabled when the -g option of c B 9 is used.

If a file named core exists in the current directory or a coredump file is specified, dbx

can be used to examine the state of the program when it faulted.

If the file . dbxini t exists in the current directory, the debugger commands in it are
executed. dbx also checks for a . dbxini t in the user's home directory if there isn't one
in the current directory.

The command line options and their meanings are

-c file

-i

-I dir

-k

-r

Execute the dbx commands in the file before reading from standard
input.

Force dbx to act as though standard input is a terminal.

Add dir to the list of directories that are searched when looking for a
source file . Normally dbx looks for source files in the current directory
and in the directory where objfile is located. The directory search path
can also be set within dbx with the use command.

Map memory addresses .

Execute objfile immediately. If it terminates successfully dbx exits.
Otherwise, the reason for termination is reported and the user is offered
the option of entering the debugger or letting the program fault. dbx will
read from / dev / tty when -r is specified and standard input is not a
terminal.

Chapter 4 The dbx debugger 4-3

- - - - --- --- - --- ---------- ---- -- ----------------------

Unless - r is specified, dbx just prompts (using the prompt > ! ! >) and waits for a
command.

Example

Consider the following example:

/*this is a C source code file, hello.c */

main()

printf("Hello, world\n");

To use the debugger on this file, you first compile the file:
c89 -g hello.c -o hello.a

then invoke the debugger
dbx hello.a

Command list

Table 4-1 shows an alphabetic listing of the commands available with dbx. The following
sections group the commands by function and describe them in detail.

■ Table 4-1 dbx commands

alias assign call catch

cont delete down dump

edit file func help

ignore list next nexti

print quit rerun return

run set sh source

status step stepi stop

stopi trace tracei unalias

unset up use whatis

where whereis which

4-4 A/UX Development Tools

Execution and tracing commands

You can use a variety of commands (discussed in the following list) to see how the
program is flowing . Breakpoints can be set in several ways: dbx can stop at a certain
source-line number, at a certain signal, when a procedure or function is called, when a
variable is changed, or when a condition becomes true.

run [args] [<filename] [>filename]
re run [argsJ [<filename] [>filename]

Start executing objfile, passing args as command-line arguments; the characters < and
> can be used to redirect output and input in the usual manner. When rerun is used
without any arguments, the previous argument list is passed to the program;
otherwise it is identical to run . If objfile has been written since the last time the
symbolic information was read in, dbx will read in the new information.

trace [in procedure/function] [if condition]
trace source-line-number [if condition]
trace procedure/function [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Have tracing information printed when the program is executed. A number is
associated with the command that can be used with the delete command to turn
the tracing off.

The first argument describes what is to be traced. If it is a source-line number, the
line is printed immediately prior to being executed. Source-line numbers in a file
other than the current one must be preceded by the name of the file in double
quotation marks and a colon, for example,

"yoyodyne.c":21 .

If the argument is a procedure or function name, every time it is called information
is printed telling what routine called it, from what source line it was called, and what
parameters were passed to it. In addition, its return is noted. If the argument is a
function , the value that function returns is also printed.

If the argument is an expression with an at clause, the value of the expression is
printed whenever the identified source line is reached.

If the argument is a variable, the name and value of the variable is printed whenever
it changes. Execution is substantially slower during this form of tracing.

If no argument is specified, all source lines are printed before they are executed.
Execution is substantially slower during this form of tracing.

Chapter 4 The dbx debugger 4-5

- ---- - - --- ---~- -

The clause "in procedure/function" restricts tracing information to be printed only
while executing inside the given procedure or function.

The term condition is a boolean expression and is evaluated prior to printing the
tracing information; if it is false then the information is not printed.

stop if condition
stop at source-line-number [if condition]
stop in procedure/function [if condition]
stop variable[if condition]

Stop execution when the given line is reached, procedure or function is called,
variable is changed, or condition becomes true. Execution can be resumed with the
cont command.

status [> filename]
Print the currently active trace and stop commands.

delete command-number ...
The traces or stops corresponding to the given numbers are removed. The numbers
associated with traces and stops are printed by the status command.

catch number .
catch signal-name
ignore number .
ignore signal-name

Start or stop trapping a signal before it is sent to the program. This is
useful when a program being debugged handles signals such as interrupts.
A signal may be specified by number or by a name (for example,
SIGINT). Signal names are case insensitive, and the SIG prefix is
optional. By default all signals are trapped except SIGCONT , SIGCHILD,

SIGALRM, and SIGKILL.

cont integer
cont signal-name

step

Continue execution from where it stopped. If a signal is specified, the process
continues as though it had received the signal. Otherwise, the process is continued
as though it had not been stopped.

Execution cannot be continued if the process has "finished," that is, if it has called
exit. Even if this call has been made, however, the user can examine the program
state because dbx does not allow the process to actually exit.

Execute one source line.

4-6 A/UX Development Tools

.... --....

next
Execute up to the next source line. The difference between next and step is that if
the line contains a call to a procedure or function, the step command will stop at
the beginning of that block, while the next command will not.

return [procedure]
Continue until the named procedure is returned to, or until the current procedure
returns if none is specified.

call procedure(parametersi
Execute the object code associated with the named procedure or function.

Example

Continuing the example defined previously, the debugger is now waiting for input. The
following code sets a breakpoint at source line 3 and traces the value of the variable
whatnow as it changes.
stop at 3
trace whatnow
run

The output looks like this:
whatever the output looks like until it stops

The program has stopped on source line 3, as requested. To finish running the program,
you tell the program to continue:
cont

and the remainder of the output looks like this:
whatever the output looks like until it stops

Printing variables and expressions

Names are resolved first using the static scope of the current function , then using the
dynamic scope if the name is not defined in the static scope. If static and dynamic
searches do not yield a result, an arbitrary symbol is chosen and the message [using

qualified name] is printed. The name resolution procedure may be overridden by
qualifying an identifier with a block name, for example, module.variable. For C, source
files are treated as modules named by the filename without the usual . c. suffix.

Chapter 4 The ct.bx debugger 4-7

Expressions are specified with an approximately common subset of C and Pascal syntax.
Indirection can be denoted using either a prefix * or a postfix A; array subscripts are
enclosed by brackets ([J). The field reference operator (.) can be used with pointers as
well as records, making the C operator-> unnecessary (although it is supported).

Types of expressions are checked; the type of an expression may be overridden by using
type-name< expression) . When there is no corresponding named type, the special
constructs & type-name and s stag-name can be used to represent a pointer to a named
type or C structure tag.

assign variable = expression
Assign the value of the expression to the variable.

dump [procedure] [>filename]
Print the names and values of variables in the given procedure, or the current one if
none is specified. If the procedure given is ". ", all the active variables are dumped.

print expression [, expression ... J

Print the values of the expressions.

whatis name
Print the declaration of the given name, which may be qualified with block names as
explained earlier in this section.

which identifier
Print the full qualification of the given identifier, that is, the outer blocks with
which the identifier is associated.

up [count]
down [count]

where

Move the current function, which is used for resolving names, up or down the stack
count levels. The default count is 1.

Print a list of the active procedures and functions . and the argument passed to them

w he re is identifier
Print the full qualification of all the symbols whose name matches the given
identifier. The order in which the symbols are printed is not meaningful.

Example

An example using the above commands is
output listing

4-8 A/UX Development Tools

Accessing source files

I regular expression [/ J
? regular expression [? J

Search forward or backward in the current source file for the given pattern.

edit [filename]
edit procedure/function-name

Invoke an editor on filename or the current source file if no filename is specified. If
a procedure or function name is specified, the editor is invoked on the file that
contains it. Which editor is invoked by default depends on the installation. You can
override the default by sening the environment variable EDITOR to the name of the
desired editor.

file [filename]
Change the current source filename to filename. If none is specified, the current
source file name is printed.

tune [procedure/Junction]
Change the current function. If none is specified, print the current function .
Changing the current function implicitly changes the current source file to the one
that contains the function; it also changes the current scope used for name
resolution.

list [source-line-number [, source-line-number] J

list procedure/function
List the lines in the current source file from the first line number to the second,
inclusive. If no lines have been specified, the next $listwindow lines are listed
(the default is 10). If the name of a procedure or function is given, lines n-k to n+k
are listed, where n is the first statement in the procedure or function and k is defined
by the value $list window.

use directory-list
Set the list of directories to be searched when looking for source files.

Example

An example using the above commands is
output listing

Chapter 4 The dbx debugger 4-9

Command aliases and variables

alias name name
alias name string
alias name (parameters> string

When commands are processed, dbx first checks to see if the word is an alias for
either a command or a string. If it is an alias, then dbx treats the input as though the
corresponding string (with values substituted for any parameters) had been entered.
For example, to define an alias rr for the command rerun, you can say

alias rr rerun

To define an alias called b that sets a stop at a particular line, you can say

alias b(x) "stop at x"

The command b (12) will subsequently expand to stop at 12.

set name [= expression]
The set command defines values for debugger variables. The names of these
variables cannot conflict with names in the program being debugged, and are
expanded to the corresponding expression within other commands. The following
variables have a special meaning:

$frame

$hexchars

$hexints

$hexoffsets

$hexstrings

$listwindow

$mapaddrs

Setting this variable to an address causes ctbx to use the stack
frame pointed to by the address for doing stack traces and
accessing local variables.

When these variables are set, dbx prints out characters, integers,
offsets from registers, or character pointers, respectively, in
hexadecimal.

The value of this variable specifies the number of lines to list
around a function or when the list command is given without any
parameters. Its default value is 10.

Setting (onsetting) this variable causes dbx to start (stop)
mapping addresses.

4-10 A/UX Development Tools

--

$unsafecall When $unsafecall is set, strict type checking is turned off
$unsafeassign for arguments to subroutine calls or function calls (for example,

in the call statement). When $unsafeassign is set, strict
type checking between the two sides of an assign statement is
turned off. These variables should be used only with great care,
because they severely limit the usefulness of dbx for detecting
errors.

unalias name
Remove the alias for name.

unset name
Delete the debugger variable associated with name.

Chapter 4 The dbx debugger 4-11

---------- -----

Example

An example using the above commands is
output listing

Machine-level commands

tracei [address] [if cond]
tracei [Variable] [at address] [if cond]
stopi [address] [if cond]
stopi [at] [address] [if cond]

Turn on tracing or set a stop using a machine instruction address .

stepi
nexti Execute a single step as in step or next, but do a single instruction rather than a

source line .. i.stepi command 4-; .i.nexti command 4-;

address, address/ [mode]
address I [count] [mode]

Print the contents of memory starting at the first address and continuing up to the
second address or until count items are printed. If the address is ". ", the address
following the one printed most recently is w;ed. The mode specifies how memory is
to be printed; if it is omined the previous mode specified is used. The initial mode
is x. The following modes are supported:
i Print the machine instruction.
d

D

0

0

X

X

b

C

s

f

g

Print a short word in decimal.
Print a long word in decimal.
Print a short word in octal.
Print a long word in octal.
Print a short word in hexadecimal.
Print a long word in hexadecimal.
Print a byte in octal.
Print a byte as a character.
Print a string of characters terminated by a null byte.
Print a single-precision real number.
Print a double-precision real number.

Symbolic addresses are specified by preceding the name with an & • Registers are
denoted by $ rn where n is the number of the register. Addresses may be expressions
made up of other addresses and the operators+,-, and indirection (unary*).

4-12 A/UX Development Tools

-

help Print out a synopsis of dbx commands.

quit Exit dbx.

sh command-line
Pass the command line to the shell for execution. The SHELL environment variable
determines which shell is used.

source filename
Read dbx commands from the given filename.

Example

An example using the above commands is
output listing

Warnings

ctbx suffers from the same "multiple include" malady as did sdb. If you have a program
consisting of a number of object files and each is built from source files that include
header files, the symbolic information for the header files is replicated in each object file .
Since about one debugger start-up is done for each link, having the linker (lct) reorganize
the symbol information would not save much time, though it would reduce some of the
disk space used.

This problem is an artifact of the unrestricted semantics of 4ti n c 1 u de files in C; for
example, an include file can contain static declarations that are separate entities for each
file in which they are included.

Some problems remain with support for individual languages. Fortran problems include
inability to assign to logical, complex and double complex variables; inability to represent
parameter constants that are not type integer or real; peculiar representation for the
values of dummy procedures (the value shown for a dummy procedure is actually the first
few bytes of the procedure text; to find the location of the procedure, use & to take the
address of the variable).

Chapter 4 The dbx debugger 4-13

Chapter 5 c8 9 Command Syntax

This chapter describes the command syntax for cs 9. The cs 9 command
is a program that invokes the C compiler, assembler, and loader, as
appropriate. (The default is to invoke each one in turn.) The compiler
incorporates a preprocessor phase that can be directed to output a
preprocessed version of the source file . This capability is useful for
checking the incorporation of #-include files and the substitution of
manifest constants.

5-1

Command syntax

The syntax for cs 9 is

cs 9 [commandopt . .. J file . . .

where commandopt is O or more command options (see the section "Options") and file is
one or more filenames. Command options and filenames can be mixed; the only position­
dependent option is -1, which specifies libraries to be searched by the loader.

cs 9 recognizes filenames of the form

file.x

The two-character extension . x identifies the contents of the file, as shown in Table 5-1 .
A filename with no extension is assumed to be a library archive.

• Table 5-1 Extension conventions

Extension Contents Example

.c C source code program.c

.i Preprocessor output program.i

. s Assembler source program.s

.o Assembler output program.a

.a Library archive libc.a

Default behavior

Running cs 9 with no command options on a file named file . c invokes the C compiler, the
assembler, and the loader in turn . This process produces an executable file in the current
directory; by default this executable file is named a . out . The C compiler includes normal
UNIX preprocessing functions.

cs 9 has a large number of command options that can be used to control the compilation
process. In addition, other command options can be passed to the preprocessor phase of
the compiler, and the compiler, assembler, and loader. The sections that follow describe
these command options.

5-2 A/UX Development Tools

------.

,--

♦ Note: In order to run the optimizer, a command option must be set. The optimizer
produces significant performance improvement. However, optimized code cannot
be symbolically debugged.

Feature test macros

A/UX defines the following feature test macros:

AUX SOURCE

BSD SOURCE

SYSV SOURCE

POSIX SOURCE

The feature test macros _sYsv _SOURCE and _BSD _SOURCE represent the historical
implementations on which A/UX is based. _Aux_souRCE represents extensions to the
historical implementations that are specific to A/UX. _Po s r x _ s ouRCE is not normally
defined.

POSIX specifies certain symbols that are defined in header files . Some of these header
files may also define symbols in addition to those defined by POSIX, potentially
conflicting with symbols defined by an application program. Feature test macros control
the visibility of these symbols in the header files required by POSIX. When POSIX
compilation is selected (with the -zp option) test macros other than _Pos r x _ SOURCE

are · not defined.

Another test macro _Aux_c_EXTENSIONS is visible provided the compilation is not
done in strict ANSI mode (the -xc option). This allows programs to make use of the A/UX
extensions such as direct functions and the pascal type qualifier.

Options

All options recognized by the c 8 9 command are listed and described in the sections that
follow. Some options are used by the compiler itself, some are passed on to the assembler
(as), and some are passed on to the loader (ld) .

Chapter 5 c 8 9 Command Syntax 5-3

Options recognized and executed by c 8 9

Table 5-2 lists the options used to control the behavior of the compiler.

■ Table 5-2 Options executed by cs 9

Option

-A

-B

-E

-H

-0

-P

-R

-s

-v

-x

Argument

factor

string

none

none

none

none

none
none

none

flag

Description

Expands the default symbol table allocations for the assembler
and loader. The default allocation is multiplied by the factor
given.
Construct pathnames for the substitute preprocessor, compiler,
and loader passes by concatenating string with the suffixes
a comp, newoptirn, as , and ld. The passes affected may be
specified by the -t option.
Same as the - P option except output is directed to the
standard output.
Print, one per line, the pathname of each file included during the
compilation on the standard output.
This option decreases the size and increases the execution
speed of programs by moving, merging, and deleting code.
When the optimizer is used, line numbers used for symbolic
debugging may be transposed.
Suppress compilation and loading; that is, invoke only the
preprocessor phase of the compiler and leave the output on
corresponding files with the extension . i .

Have assembler remove its input file when done.
Compile the named C programs and leave the assembly language
output within corresponding files suffixed . s .

Cause each invoked tool to print its version information on the
standard output. Also causes the compiler to issue additional
warnings for possible lint-type errors.
Specify the degree of conformance to the ANSI C standard. The
flag can be one of the following:
a (ANSI). The compiled language includes all the new features

of ANSI C. The compiler warns about language constructs
that have differing behavior between the new and old
versions and uses the new interpretation of constructs with
differing behavior. This includes, for example, warning
about the use of trigraphs, the new escape sequence, and
changes to the integral promotion rules.

(continued)

A/UX Development Tools

■ Table 5-2 Options executed by ca 9 (continued)

Option

-w

-z

-#

-a

-c

-f

Argument Description

c (conformance). The compiled language and associated
header files conform to the ANSI C standard, but include all
conforming extensions of - xa. Warnings will be produced
about some of these extensions. Only ANSI-defined
identifiers are visible in the standard header.

t (transition). The compiled language includes all new
features compatible with older (pre-ANSI) C languages. The
compiler warns about all language constructs that have
differing behavior between the new and old versions, and
uses pre-ANSI C interpretation. This is the default behavior.

c, argl[,a1g2 .. .l Pass the argument(s) argl to c, where c is one of [02a1],
indicating compiler, optimizer (2), assembler (a), or loader (1) ,
respectively.

flags Special flags to override the default behavior (see ca 9(1)).

Currently recognized flags are:
1 Suppress selection of a loader command file.
t Do not delete temporary files.
P Compile for the A/UX POSIX environment. Load the file

with a library module that calls setcornpat(2) with the
COMPAT_POSIX flag set. Define only the _POSIX_SOURCE

feature test macro.
s Compile to be SVID compatible. Load the file with a library

module that calls setcornpat(2) with the COMPAT_svrn

flag set. Define only the _ svsv _ SOURCE feature test
macro.

B Compile to be BSD compatible. Load the file with a library
module that calls setcornpat(2) with the COMPAT_BSD

flag set. Define only the _BSD_ SOURCE feature test macro.
none Special debug option that, without actually starting the

program, echoes the names and arguments of subprocesses that
would have started.

none Include source code as comments in the assembly file generated
with the -s option.

none Suppress the loading phase of compilation and force
production of a relocatable object file even if only one file is
compiled.

rn6 a a a 1 This option is ignored.

(continued)

Chapter 5 ca 9 Command Syntax 5-5

■ Table 5-2 Options executed by ca 9 (continued)

Option Argument

-g none

-n none

-p none

-t [02al)

-v none

Description

This option produces information for a symbolic debugger.
(For more information, see Chapter 4, "ctbx Reference.")
Arrange for the loader to produce an executable file that is
loaded in such a manner that the text can be made read-0nly
and shared (nonvirtual) or paged (virtual).
Arrange for the compiler to produce code that counts the
number of times each routine is called. A man. out file will be
produced at normal termination of execution of the object
program. See prof(l) for usage of the man. out file .
Find only the designated compiler (o), optimizer (2) ,

assembler (a), and loader (1) passes whose names are
constructed with the string argument to the - s option. In the
absence of a - s option and its argument, string is taken to
be /lib/n.

Print the command line for each subprocess executed.

Options recognized by c 8 9 and passed to as

Table 5-3 lists the options that are recogniied by the compiler and passed to the
assembler.

■ Table 5-3 Options passed to as

Option Argument

-68030 none

-68851 none

Description

Directs the assembler to recognize the memory management
unit (MMU) instructions for a Motorola 68030
microprocessor.
Directs the assembler to recognize the coprocessor
instructions for a Motorola 68851 PMMU.

Options recognized by c 8 9 and passed to 1 d

Table 5-4 lists the options that are recognized by the compiler and passed to the loader.

s-6 A/UX Development Tools

■ Table 5-4 Options passed to 1 ct

Option Argument

-1 name

-o outfile

-s none

-L dir

-v none

Description

Same as -1 in 1ct(1). Search a library libname. a, where
name is up to seven characters. A library is searched when its
name is encountered, so the placement of -1 is significant.
By default, libraries are located in LIBDIR. If you plan to use
the - L option, that option must precede -1 on the
command line.
Same as -o in 1ct(l). Produce an output object file, outfile.
The default name of the object file is a . out .

Same as -s in 1ct(1). Strip the line number entries and symbol
table information from the output of object file .
Same as-Lin 1ct(l). Search for lib name. a in the named dir
before looking in LI BD r R. This option is effective only ifit
precedes the -1 option on the command line.
Print the version of the loader that is invoked.

For more information on any of the options which cB 9(1) passes to the loader 1ct(l), see
the AIUX Command Reference and chapter 6, "The ld loader."

Options recognized by c 8 9 and passed to the preprocessor

Table 5-5 lists the options that are recognized by the compiler and used to modify its
preprocessor phase.

■ Table 5-5 Options passed to the preprocessor

Option

-c

-D

Argument Description

none All comments are passed along. The default strips out all
comments .

symbol [=de.JJ Define the external symbol and give it the value dej(if
specified). If no def is given, symbol is defined as 1.

(continued)

Chapter 5 c B 9 Command Syntax 5-7

■ Table 5-5 Options passed to the preprocessor (continued)

Option

-I

-u

Argument

dir

symbol

Description

Search for #include files that do not begin with / in the
named dir before looking in the directories on the standard
list. Thus, #include files whose names are enclosed in
quotation marks (for example, #include "thisfile")

are first searched for in the directory of the file being
compiled, then in directories named by the - I options, and
last in directories on the standard list. For# include files
whose names are enclosed in<> (for example, #include

<thisfile>), the directory of the file being compiled is
not searched.
Remove any initial definition of symbol ("undefine" symbo() ,
where symbol is a reserved name that is predefined by the
particular preprocessor.

Intermediate output

By using appropriate options, collected in Table 5-6, you can terminate compilation early
to produce one of several intermediate translations. A number of such options are
available:

■ Table 5-6 Intermediate output options

Option

-c

-E

Description

This option produces relocatable object files .
It is often desirable to use the -c option to save relocatable files so that
changes to one file do not then require recompilation of other files . A
separate call to cs 9, with the relocatable files but without the -c option,
creates the loaded executable a.out file. A relocatable object file created
under the -c option has the same root as the relocatable object file , but the
extension is . o instead of . c.

This option gives roughly the same output as - P , except the output goes to
stdout.

-s This option produces assembly-source expansions for C code.

5-8 A/UX Development Tools

.----...._

-P This option produces the output of the preprocessor. When you use this
option, the compilation process stops after preprocessing. Output from the
preprocessor is left in an output file with the extension . i (for example,
f ilel. i). A preprocessed output file can be subsequently processed by
c 8 9, but only if its filename is changed to one with the extension . c . Except
for those produced by the preprocessor, any intermediate files may be saved
and resubmitted to the ca 9 command, with other files or libraries included as
necessary.

-w This option lets you specify options for each step that is normally invoked
from the cs 9 command line, that is, (1) preprocessing, (2) the first pass of
the compiler, G) the second pass of the compiler, (4) optimization, (5)
assembly, and (6) loading.
At this time, only assembler and loader options can be used with the -w
option. The most common example of the -w option is
-w1,-vs,n

which passes the -vs n option to the loader (1ct(l)). In the example
-wa, -option
the compiler will pass the -option to the assembler.

-o This option decreases the size and increases the execution speed of programs
by moving, merging, and deleting code. When the optimizer is used, line
numbers used for symbolic debugging may be transposed.

-g This option produces information for a symbolic debugger.

Chapter 5 ca 9 Command Syntax 5-9

Chapter 6 as Reference

Programmers familiar with the MC68000 family of processors should be able
to debug code produced by the A/UX resident assembler, as , after
reviewing this chapter, but this is not a reference for the processor itself.
Details about the effects of instructions, meaning of status register bits,
handling of interrupts, and many other issues are not dealt with here. This
chapter should therefore be used in conjunction with the following
reference manuals:

■ MC68020 32-Bit Microprocessor User's Manual(Prentice-Hall, 1984.) ·

■ MC68030 Enhanced 32-Bit Microprocessor User's Manual Second
&iition (Prentice-Hall, 1989.)

■ MC68851 Paged Memory Management Unit User's Manual, (Motorola,
Inc., 1985.)

■ MC68881 Floating Point Coprocessor User's Manual, (Motorola, Inc.,
1985.)

6-1

Warnings

A few important warnings to the as user should be emphasized at the outset. Although, for
the most part, there is a direct correspondence between as notation and the notation used in
the documents listed in the introduction to this chapter, several exceptions could lead the
unsuspecting user to write incorrect code. In addition to the exceptions described in the
following paragraphs, refer also to the sections "Address Mode Syntax" and "Machine
Instructions" later in this chapter for further information.

Comparison instructions

The order of the operands in compare instructions follows one convention in the MC68020
and MC68030 Programmer's Reference Manuals and the opposite convention in as . Using
the convention of the MC68020 Programmer's Reference Manual, you might write

CMP.W D5, D3

BLE IS LESS
Is D3 less than D5?

Branch if less.

Using the as convention, you would write

cmp.w %d3,%d5

ble is less

Is d3 less than d5?

Branch if less.

The convention used by as makes for straightforward reading of compare and branch
instruction sequences, with this exception: if a compare instruction is replaced by a subtract
instruction, the effect on the condition codes is entirely different. This result may be confusing
to programmers who are used to thinking of a comparison as a subtraction whose result is not
stored. Users of as who become accustomed to its convention find that both the compare
and subtract notations make sense in their respective contexts.

Case sensitivity

In the A/UX implementation, only lowercase instruction and register names are valid. For
example,

mov %dl,%d2 # works

is acceptable, while

MOV %D1, %D2 # does not work

6-2 A/UX Development Tools

is not. This is especially important for those who wish to port existing code from other
machines.

Overloading of opcodes

Another issue that users must be aware of arises from the MC68000-family processors' use of
several different instructions to do more or less the same thing. For example, the MC68020
Programmer's Reference Manua/lists the instructions suB, SUBA, SUBI, and SUBQ, which
all have the effect of subtracting their source operand from their destination operand. as

replaces the separate suba, subi, and subq instructions, allowing all these operations to be
specified by a single assembly instruction sub. On the basis of the operands given to the sub

instruction, the as assembler selects the appropriate MC68000-family operation code. The
danger created by this convenience is that it could give the misleading impression that all
forms of the SUB operation are semantically identical. In fact, they are not. The careful reader
of the MC68020 Programmer's Reference Manual will notice that whereas sus, susr , and
SUBQ all affect the condition codes in a consistent way, SUBA does not affect the condition
codes at all. Consequently, the as user must be aware that when the destination of a sub

instruction is an address register (which causes the sub to be mapped into the operation
code for suba), the condition codes will not be affected.

Using as

The A/UX command as invokes the assembler and has the following syntax:

as [-ml [-nl [-o outfileJ [-RJ [-VJ [-A factor] filename

The command options listed in Table 6-1 may be specified in any order.

■ Table 6-1 Options to as

Option Description

-A factor Expand the default symbol table by the factor given.
-R Remove (unlink) the input file after assembly is completed. This command

option is off by default.
(Continued)

Chapter 6 The as assembler 6-3

■ Table 6-1 Options to as (Comiriued)

Option

-v

-m

-n

-o outfi/e

-68030

-68851

Description

Write the version number of the assembler being run on the standard error
output.
Run the m4 macro preprocessor on the input to the assembler.

♦ Note: If the -m command option is used, keywords for m4 cannot be used
as identifiers (variables, functions, labels, and so on) in the input file
because m4 cannot determine which are assembler symbols and which are
real m4 macros.

Tum off long/short address optimization. By default, address optimization takes
place.
Put the output of assembly in out.file. By default, the output filename is formed
by removing the . s suffix, if there is one, from the input filename and
appending an . o suffix.
Assemble for the MC68030 processor. This gives you access to an enhanced
feature set as compared to the default MC68020 assembly, but the code will not
run on all Macintosh II models.
Assemble for the MC68851 Memory Management Unit (MMU). This command
option is on by default.

General syntax rules

The following sections discuss the components of the assembly language produced by the as

assembler.

6-4 A/UX Development Tools

Format of assembly language code

Typical lines of as assembly code look like these:

t Clear a block of memory at location %a3

text 2

mov.w

loop:

dbf

init2:

&const,%dl

clr.l (%a3)+

%dl,loop t go back for const

t repetitions

clr.l count; clr.l credit; clr.l debit;

where the suffix to clr is always the lener 1 (ell), while %dl indicates data register 1 (one).

These general points about the example should be noted:

■ An identifier occurring at the beginning of a line and followed by a colon (:) is a label. In
the example above, loop and ini t2 are labels. One or more labels may precede any
assembly language instruction or pseudo-operation. Refer to the section "Location
Counters and Labels."

■ A line of assembly code need not include an instruction. It may consist of a comment
alone (introduced by t), or a label alone (terminated by :), or it may be entirely blank.

■ It is good practice to use tabs to align assembly-language operations and their operands
into columns, but this is not a requirement of the assembler. An opcode may appear at the
beginning of the line, if desired, and spaces may precede a label. A single blank or tab
suffices to separate an opcode from its operands. Additional blanks and tabs are ignored
by the assembler.

■ It is permissible to write several instructions on one line, separating them by semicolons.
The semicolon is syntactically equivalent to a newline character; however, a semicolon
inside a comment is ignored.

Comments

Comments are introduced by the character # and continue to the end of the line. Comments
may appear anywhere and are disregarded by the assembler.

Chapter 6 The as assembler 6-5

Identifiers

An identifier is a name for a variable, label, register, or function. It consists of a string of
characters taken from the set a -z, A-z, _, ~, % , and 0-9. The first characterof an
identifier must be a letter (uppercase or lowercase) or an underscore. Uppercase and
lowercase letters are distinguished; for example, con3 s and coN3 s are two distinct
identifiers.

Identifiers can be up 1024 characters long (this limit is imposed by the loader).

The value of an identifier is established by the set pseudo-operation (refer to the section
"Symbol Definition Operations") or by using it as a label (refer to the section "Location
Counters and labels").

The tilde character (~)has special significance to the assembler. A tilde used alone as an
identifier means "the current location." A tilde used as the first character in an identifier
becomes a period (.) in the symbol table. This is provided for backward compatibility. The
assembler now directly supports symbols such as . eos and . o fake to be entered into the
symbol table, as required by the Common Object File Format. Information about file formats
is provided in Section 4 of the AIUX Programmer's Reference.

Register identifiers

A register identifier is an identifier preceded by the character % , and represents one of the
MC68000-family processors' registers. The predefined MC68020 register identifiers are shown
in Table 6-2.

■ Table 6-2 Predefined MC68020 registers

Name

%d0-7

%a0-5

%a6

%a7, %usp

%pc

%ccr

%isp

%msp

%sr

%vbr

%sfc

%dfc

Description

Data registers
Address registers
Address register (also defined as % fp)

User stack pointer (also defined as %sp)

Program counter
Condition code register
Interrupt stack pointer
Master stack pointer
Status register
Vector base register
Alternate function code register (also defined as % sf c r)

Alternate function code register (also defined as %dfcr)

6-6 A/UX Development Tools

%cacr
%caar

Cache control register
Cache address register

To preserve the upward compatibility of MC68000 code, the identifiers %a 7 , % sp, and %usp
represent the same machine register. Likewise, % a 6 and % fp are equivalent. Use of both % a 7

and %sp, or %a6 and %fp, in the same program may result in confusion and should be
avoided. The registers %sfc and %sf er are also equivalent, as are %dfc and %dfcr.

The entire register set of the MC68000 and MC68010 is included in the MC68020 register set.
Table 6-3 shows the new control registers for the MC68030:

■ Table 6-3 Additional registers for MC68030

Name Description

%crp CPU root pointer
% s rp Supervisor root pointer
%tc Translation control register
%t to, %t t1 Translation registers
%psr MMU status register

Various registers can be suppressed; these suppressed registers (also called zero registers) are
used in various complex MC68020 addressing modes. The notation for suppressed registers is
% zdn for data register n, % za n for data register n, and % zpc for the suppressed program
counter.

Constants ·

as deals only with integer constants. They may be entered in decimal, octal, or hexadecimal,
or they may be entered as character constants. Internally, as treats all constants as 32-bit
binary 2's-complement quantities.

Numeric constants

A decimal constant is a string of digits beginning with a nonzero digit. An octal constant is a
string of digits beginning with zero. A hexadecimal constant consists of the characters ox.or
ox followed by a string of characters from the set o - 9 , a - f, and A-F. In hexadecimal
constants, uppercase and lowercase leners are not distinguished. Here are some examples:

Chapter 6 The as assembler 6-7

set const,35 # decimal 35

mov.w &035,%dl # octal 35 (decimal 29)

set const, Ox35 # hex 35 (decimal 53)

mov.w &Oxff,%dl # hex ff (decimal 255)

Character constants

An ordinary character constant consists of a single quotation mark (') followed by an
arbitrary ASCII character other than the backslash (\). The value of the constant is equal to
the ASCII code for the character. For example, the character constant 'A has value Ox 41.

Special meanings of characters are overridden when used in character constants; for example,
if ' # is used, the # is not treated as introducing a comment.

Special character constants convey special information to the assembler. A special character
constant consists of ' \ followed by another character. All the special character constants are
listed in Table 6-4.

■ Table 6-4 Special character constants

Constant Value Meaning

I \b Ox08 Backspace
'\t Ox09 Horizontal tab
I \n OxOa Newline (line feed)
'\v OxOb Vertical tab
'\f OxOc Form feed
'\r OxOd Carriage return
t \\ Ox5c Backslash

Other syntactic details

A discussion of expression syntax appears in the section "Expressions." Information about the
syntax of specific components of as instructions and pseudo-operations is given in the
sections "Pseudo-operations," "Span-Dependent Optimization," and "Address Mode Syntax."

6-8 A/UX Development Tools

'

Segments, location counters, and labels

The following sections describe how the assembler arranges and locates various pieces of
code.

Segments

A program in as assembly language can be broken into segments known as text, data ,

and bs s segments. The convention regarding the use of these segments is to place
instructions in text segments, initialized data in data segments, and uninitialized data in
bss segments. The assembler does not enforce this convention, however. For example, it
permits intermixing of instructions and data in a tex t segment if specifically directed to mix
the segments. Routines to be placed in the shared library may also have an ini t segment,
which contains initialization fragments . An ini t segment is treated similarly to a tex t

segment.

This convention of using separate text, data, and bss segments permits the sharing of
text segments between programs on systems utilizing shared memory, such as A/UX. If
several copies of a program are running at once, as can happen when users are logged on
over a network, there is only one instance of the text segment in memory, thus conserving
memory space.

Primarily to simplify compiler code generation, the assembler permits up to four separate
text segments and four separate data segments named o, 1, 2, and 3. The assembly­
language program may switch freely among them by using assembler pseudo-operations (see
the section "Location Counter Control Operations" later in this chapter). This can be handy,
for example, if you want to put all the constants in one segment and all the function in
another. When generating the object file, the assembler concatenates the text segments to
generate a single text segment, and the data segments to generate a single data segment.
Thus, the object file contains only one tex t segment and only one data segment. There is
always only one bss segment, and it maps directly into the object file .

Because the assembler keeps together everything from a given segment when generating the
object file, the order in which information appears in the object file may not be the same as in
the assembly-language file. For example, if the data for a program consists of

data 1 # segment 1
short Oxllll
data O # segment 0
long Oxffffffff
data 1 # segment 1
byte Oxff

Chapter 6 The as assembler 6-9

the assembler groups the data for segment O together (in the order the assembler encounters
it), then groups the data for segment 1. It then places the data for segment 1 after the data for
segment Oas it builds the object file. Thus, for the example just given, equivalent object code
is generated by

data 1
data 0
long Oxffffffff
short Oxllll
byte Oxff

In this equivalent code example, the first statement

data 1

is effectively ignored.

Location counters and labels

The assembler maintains separate location counters for the bss segment and for each of the
text and data segments. The location counter for a given segment is incremented by 1
for each byte generated in that segment.

The location counters allow values to be assigned to labels. When an identifier is used as a
label in the assembly-language input, the value of the current location counter is assigned to
the identifier. The assembler also keeps track of the segment in which the label appeared.
Thus, the identifier represents a memory location relative to the beginning of a particular
segment. Any label relative to the location counter should be within the text segment.

Types

Identifiers and expressions can have values of different types.

■ In the simplest case, an expression or identifier may have an absolute value, such as 29, -
5000, or 262143.

♦ Note: The term absolute value is not used here in the mathematical sense.

6-10 A/UX Development Tools

■ An expression or identifier may have a value relative to the start of a particular segment.
Such a value is known as a relocatable value. The memory location represented by such
an expression cannot be known at assembly time, but the relative values of two such
expressions (that is, the difference between them) can be known if they refer to the same
segment.

■ Identifiers that appear as labels have relocatable values.

■ If an identifier is never assigned a value, it is assumed to be an undefined external. Such
identifiers may be used with the expectation that their values will be defined in another
program and therefore known at load time, but the relative values of undefined externals
cannot be known.

Expressions

Since the value of some expressions cannot be known at assembly time, expression involving
such values may also not be known at assembly time. This section provides the rules for
determining if expressions involving unknown values are knowable.

For conciseness, the following abbreviations are useful:

abs absolute expression

rel relocatable expression

ext undefined external

All constants are absolute expressions. An identifier may be thought of as an expression
having the identifier's type. Expressions may be built up from lesser expressions using the
operators +, - , * , and / , according to the following type rules:

abs + abs = abs

abs + rel = rel + abs = rel

abs + ext = ext + abs = ext

abs - abs = abs

rel - abs = rel

ext - abs = ext

rel - rel = abs (provided that the two relocatable expressions
are relative to the same segment)

abs * abs = abs

abs I abs = abs

Chapter6 The as assembler 6-11

-abs = abs

rel - rel expressions are permitted only within the context of a switch statement (see the
section "Switch Table Operation" later in this chapter). Use of a rel - rel expression is
dangerous, particularly when dealing with identifiers from text segments. The problem is
that the assembler will determine the value of the expression before it has resolved all
questions concerning span-dependent optimiz.ations.

The unary minus operator takes the highest precedence; the next highest precedence is given
to * and /, and lowest precedence is given to + and binary - . Parentheses may be used to
coerce the order of evaluation.

If the result of a division is a positive noninteger, it will be truncated toward zero. lf the result
is a negative noninteger, the direction of truncation cannot be guaranteed.

Pseudo-operations

This section details instructions to the assembler that do not involve expressions or operators.
Collectively these are known as pseudo-operations. Any pseudo-operation can be prefixed by
a period (.);this is provided for backward compatibility.

Data initialization operations

The following pseudo-operations allocate memory space for a program.

byte abs, abs, ...
One or more arguments, separated by commas, may be given. The values of
the arguments are computed to produce successive bytes in the assembly
output.

short abs, abs, ...
One or more arguments, separated by commas, may be given. The values of
the arguments are computed to produce successive 16-bit words in the
assembly output.

6-12 A/UX Development Tools

long expr, expr, ...
One or more expressions, separated by commas, may be given. Each
expression may be absolute, relocatable, or undefined external. A 32-bit
quantity is generated for each such argument (in the case of relocatable or
undefined external expressions, the actual value may not be filled in until
load time). Alternatively, the arguments may be bitfield expressions. A
bitfield expression has the form

n: value

where both n and value denote absolute expressions. The quantity n
represents a field width; the low-order n bits of value become the contents
of the bitfield. Successive bitfields fill up 32-bit long quantities, starting
with the high-order part. If the sum of the lengths of the bitfields is less than
32 bits, the assembler creates a 32-bit long with Os filling out the low-order
bits. For example,

long 4: -1, 16: Ox7f, 12:0, 5000

and

long 4: -1, 16: Ox7f, 5000

are equivalent to

long Oxf007f000, 5000

as shown in Figure 6-1.

Bitfields may not span pairs of 32-bit longs. Thus,

long 24: Oxa, 24: Oxb, 24:0xc

yields the same result as

long OxOOOOOaOO, OxOOOOObOO, OxOOOOOcOO

as shown in Figure 6-1 .

Chapter 6 The as assembler 6-13

■ Figure 6-1 Bitfield concatenation

r 4:-1 1 (16:0x7f 1 r--- 12:0 --..1 r fl [0--y-0--y-7 --y- f 1 r O-y--0-y-O l

~ !01°1°1°1°1°1°1°1°1 1 l1 l1l1l1 l1 I 1 I l9l◊l9l6lglolgl019f0 1°1°1
_ _: ~ / !
\ \: / j

i 1 I 1 I 1 I 1."l 01°1°1°1°1°1°1°1°1 1 I 1 I 1 I 1 I 1 I 1 I 1 [oj9jo!PIP[PIQIPIPIRWl2i
-------Oxf007f000-------

----24:x000008----

-------OxOOOOOaOO------....

lo Jo Jo Jojo Jo Jojo Jojo lo Jo Jo Jojo Jojojo Jo I ojo Jo J 1 Jojojojo.JoJojojoJ◊I
Lo_).__ o _).__ o _).__ o _).__ o _).__a_).__ Padded by _j

assembler

space abs The value of abs is computed, and the resultant number of bytes of O data is
generated. For example,

space 6

is equivalent to

byte 0,0,0,0,0,0

Symbol definition operations

The following pseudo-operations allocate memory space for a program:

6-14 A/ill(Development Tools

set identifier, expr
The value of identifier is set equal to expr, which may be absolute or
relocatable.

comm identifier, abs
The named identifier is assigned to a common area of size abs bytes. If
identifier is not defined by another program, the loader will allocate space
for it.

lcomm identifier, abs
The named identifier is assigned to a local common area of size abs bytes.
This results in allocation of space in the bss segment. The type of identifier
becomes relocatable.

global identifier This causes identifier to be externally visible. If identifier is defined in the
current program, declaring it global allows the loader to resolve
references to identifier in other programs. If identifier is not defined in the
current program, the assembler expects an external resolution.

Location counter control operations

The following pseudo-operations define the segment in which code is to be allocated, and the
alignment within that segment.

data abs

text abs

org expr

even

longeven

The argument, if present, must evaluate to 0, 1, 2, or 3; this indicates the
number of the cta ta segment into which assembly is to be directed. If no
argument is present, assembly is directed into data segment 0.

The argument, if present, must evaluate to 0, 1, 2, or 3; this indicates the
number of the text segment into which assembly is to be directed. If no
argument is present, assembly is directed into text segment 0. Before the
first text or data operation is encountered, assembly is by default
directed into text segment 0.

The current location counter is set to expr, which must represent a value in
the current segment and must not be less than the current location counter.

The current location counter is rounded up to the next even value.

The current location counter is rounded up to the next 4-byte multiple
value.

Chapter6 The as assembler 6-15

align n

init

The current location counter is rounded to a multiple of n bytes, where n
can be 2,4,8,or 16. even is equivalent to align 2; longeven is
equivalent to align 4.

The assembly is directed into the ini t segment. This operation is typically
used for shared library initialization fragments.

Symbolic debugging operations

The assembler allows for symbolic debugging information to be placed into the object code
file with special pseudo-operations. The information typically includes line numbers and
information about C language symbols, such as their type and storage class. The C compiler
c89 generates symbolic debugging information when the -g command option is used.
Assembler programmers may also include such information in source files .

file and ln

The file pseudo-operation passes the name of the source file into the object file symbol
table. It has the form

file "filename"

where filename must be enclosed in straight double quotation marks.

The ln pseudo-operation makes a line number table entry in the object file; that is, it
associates a line number with a memory location. Usually the memory location is the current
location in text. The format is

ln line [,value]

where line is the line number. The optional value is the address in a text, data, or bss

segment to associate with the line number. The default when value is omined (which is
usually the case) is the current location in tex t.

Symbol attribute operations

The basic symbolic testing pseudo-operations are def and endef . These operations enclose
other pseudo-operations that assign anributes to a symbol and must be paired. The basic
syntax for using def and endef is

def name
attrasgn
attrasgn

6-16 A/UX Development Tools

--- - ·- --- ----

endef

where attrasgn may be any one of the attribute assigning operations shown in the list at the
end of this section.

The term def does not define the symbol, although it does create a symbol table entry.
Because an undefined symbol is treated as external, a symbol that appears in a def pseudo­
operation but that never acquires a value will ultimately result in an error at load time.

To allow the assembler to calculate the sizes of functions for other tools, each def/ endef

pair that defines a function name must be matched by a def/ ende f pair after the function
in which a storage class of -1 is assigned, where -1 is the physical end of a function.

The paragraphs following describe the attribute-assigning operations (attrasgn in the syntax
diagram just discussed). Keep in mind that all these operations apply to the symbol name that
appeared in the opening def pseudo-operation.

val expr

scl expr

type expr

tag expr

line expr

size expr

Assigns the value exprto name. The type of the expression exprdetermines
with which section name is associated. If value is ~, the current location in
. the text section is used.

Declares a storage class for name. The expression expr must yield an
absolute value that corresponds to the C compiler's internal representation
of a storage class. The special value -1 designates the physical end of a
function.

Declares the C language type of name. The expression expr must yield an
absolute value that corresponds to the C compiler's internal representation
of a basic or derived type.

Associates name with the structure, enumeration, or union named str that
must have already been declared with a def/ ende f pair.

Provides the line number of name, where name is a block symbol. The
expression expr should yield an absolute value that represents a line
number.

Gives a size for name. The expression exprmust yield an absolute value.
When name is a structure or an array with a predetermined extent, expr
gives the size in bytes. For bitfields, the size is in bits.

Chapter 6 The as assembler 6-17

dim expr1,expr2, ...
Indicates that name is an array. Each of the expressions must yield an
absolute value that provides the corresponding array dimension.

Switch table operation

The C compiler generates a compact set of instructions for the C language switch construct.
For example,

sub.l &l,%d0
cmp.l %d0,&4
bhi L%21
add.w %d0,%d0
mov.w 10(%pc,%d0.w),%d0
jmp 6(%pc,%d0.w)
swbeg &5

L%22:
short L%15-L%22
short L%21-L%22
short L%16-L%22
short L%21-L%22
short L%17-L%22

The special swbeg pseudo-operation communicates to the assembler that the lines following
it contain rel - rel subtractions. Remember that ordinarily such subtractions are risky because
of span-dependent optimization. In this case, however, the assembler makes special
allowances for the subtraction, because the compiler guarantees that both symbols will be
defined in the current assembler file, and that one of the symbols is a fixed distance away
from the current location.

The swbeg pseudo-operation takes an argument that looks like an immediate operand. The
argument is the number of lines following the swbeg instruction that contain switch table
entries. swbeg inserts two words into text. The first is the illegal instruction code. The
second is the number of table entries that follow. The disassembler dis(l) needs the
illegal instruction as a hint that what follows is a switch table. Otherwise, dis(l)

becomes confused and tries to decode the table entries, which are differences between two
symbols, as instructions.

6-18 A/UX Development Tools

,---.._

Span-dependent optimization

The assembler makes certain choices about the object code it generates based on the distance
between an instruction and its operand(s). Several choices are available; distances can be
expressed with 8-, 16-, or 32-bit displacements. These are called the short, long, and very long
forms, respectively.

Choosing the smallest, fastest form is called span-dependent optimi7.ation. Span­
dependent optimization occurs most obviously in the choice of object code for branches and
jumps. It also occurs when an operand may be represented by the program counter relative
address mode instead of as an absolute two-word (long) address. The span-dependent
optimization capability is normally enabled; the -n command option disables it. When this
capability is disabled, the assembler makes worst case assul'Tlptions about the types of object
code that must be generated. Span-dependent optimizations are performed only within tex t

segment 0. Any reference outside tex t segment O is assumed to be a worst case.

The C compiler cs 9(1) generates branch instructions without a specific offset size. When the
optimizer is used, it identifies branches that could be represented by the short form, and it
changes the operation accordingly. The assembler chooses only between long and very long
representations for branches.

Although the largest offset specification allowed is a word, large programs conceivably could
have need for a branch to a location not reachable by a word displacement. Therefore,
equivalent long forms of these instructions might be needed. When the assembler encounters
a branch instruction without a size specification, it tries to choose between the long and very
long forms of the instruction. If the operand can be represented in a word, the long form of
the instruction will be generated. Otherwise, the very long form will be generated. For
unconditional branches (for example, br, bra , and bs r), the very long form is just the
equivalent jump (jmp and j s r) with an absolute (instead of pc-relative) address operand.
For conditional branches, the equivalent very long form is a conditional branch around a
jump, where the conditional test has been reversed.

Table 6-5 summarizes span-dependent optimizations. Again, the assembler chooses only
between the long form and the very long form, while the optimizer chooses between the
short and long forms for branches (but not bsr).

Chapter 6 The as assembler 6-19

■ Table 6-5 Assembler span-dependent optimizations

Instruction Short form

br, bra, bsr Byte offset

Conditional branch Byte offset

jmp, jsr
lea,pea

Long form

Word offset

Word offset

pc-relative address
pc-relative address

Very long form

jmp or jsr with
absolute long address
Shon conditional branch
with reversed condition
around jmp with
absolute long address
Absolute long address
Absolute long address

Branch instructions may have either a byte, word, or long pc-relative address operand. The
assembler still chooses between word and long representations for branches if no byte size
specification is given; however, the long form is replaced by a branch long with pc-relative
address instead of a jump with absolute long address.

Address modes

The as assembler provides you with nine basic kinds of addressing modes:

■ register direct

■ register indirect

■ register indirect with index

■ memory indirect

■ program counter indirect with displacement

■ program counter indirect with index

■ program counter memory indirect

■ absolute

■ immediate

Address mode syntax

In the tables throughout this chapter, the following abbreviations are used:

An/an Address register, where n is any digit from O through 7.

6-20 A/UX Development Tools

bd

d

on/ctn

od

PC/pc

Ri!ri

scl

[l

()

{ }

2's-complement base displacement that is added before indirection takes
place; the size may be 16 or 32 bits.

2's-complement or sign-extended displacement that is added as part of
effective address calculation; size may be 8 or 16 bits; when omitted, the
assembler uses the O value.

Data register, where n is any digit from O through 7.

Outer displacement that is added as part of effective address calculation
after memory indirection; the size may be 16 or 32 bits .

Program counter.

Index register i may be any address or data register with an optional size
designation (that is, ri. w for 16 bits or ri.1 for 32 bits); the default size is 16
bits (. w).

Optional scale factor that may be multiplied times index register in some
modes. Values for sclare 1, 2, 4, or 8; the default is 1.

Grouping characters used to enclose an indirect expression; these are
required characters. Addressing arguments may occur in any order within
the brackets.

Grouping characters used to enclose an entire effective address; these are
required characters. Addressing arguments may occur in any order within
the parentheses.

Indicate that a scale factor is optional; these are not required characters.

It is important to note that expressions used for the absolute addressing modes need not be
absolute expressions in the sense previously described in the section "Types." Although the
addresses used in those addressing modes must ultimately be filled in with constants, that can
be done later by the loader. The assembler need not be able to compute them. Indeed, the
absolute long addressing mode is commonly used for accessing undefined external addresses.
Several examples illustrate the use of this notation:

%d7 indicates data register 7.

(% a3) indicates the contents of address register 3.

14 (%a 4) indicates that the decimal displacement 14 is added to the contents of address
register 4.

<%al. w) indicates the contents of the word in address register 1; the register is treated as an
index register.

Chapter 6 The as assembler 6-21

< % d3 . w { * 2 l > indicates the contents of the word in index register d3; the register is treated
as an index register and the contents of the register are multiplied by 2.

Effective address modes

Table 6-0 summarizes the as syntax for MC68020 addressing modes.

■ Table 6-6

MC680x0 notation

Dn
An

(An)

(An)+

- (An)

d(An)

(An,Ri)

d(An,Ri>

(An, Ri{ *sci))

Effective address modes

as notation

%ctn
%an
(%an)

(%an)+

-(%an)

d<%an>

(%an, %ri . w)

(%an, %ri . l)

d(%an, %ri.w)

d(%an, %ri. l)

(%an, %ri{ *Sci))

■ Table 6-6 Effective address modes (Continued)

MC680x0 notation as notation

(bd, An, Ri! *sci)) (bd, %an, %ri{ *Sci)>

Address mode

Data register direct
Address register direct
Address register indirect
Address register indirect with
postincrement 1

Address register indirect with
predecrement 1

Address register indirect with
displacement (d signifies a signed
16-bit absolute displacement)
Address register indirect with
index
Address register indirect with
index plus displacement (d
signifies a signed 8-bit absolute
displacement)
Address register direct with index

(Continued)

Address mode

Address register direct with index
plus base displacement

1 If the address register is the stack pointer and the operand size is byte, the address is changed by 2 rather than 1
to keep the stack pointer aligned to a word boundary.

6-22 NUX Development Tools

([bd, An, Ri! * sci) J , od) ([bd, %an, % ri! *Sci} J , od) Memory indirect with preindexing
plus base and outer displacement

< [bd, An], Ri(*Sci}, od) ([bd, %an], %ri(*Sci}, od) Memory indirect with postindexing
plus base and outer displacement

d (PC) d (%pc) Program counter indirect with
displacement (d signifies 16-bit
displacement)

d (PC, Ri> d(%pc, %rn. l) Program counter direct with index
d <%pc, % rn. w) and displacement (d signifies 8-bit

displacement)
< bd, PC, Ri ! * sci) > < bd, %pc, % ri(* sci)) Program counter direct with index

and base displacement
([bd, PC] , Ri! * sci} , od) < [bd, %pc J , % ri{ * sciJ, od) Program counter memory indirect

with postindexing plus base and
outer displacement

< [bd, PC, Ri! * sci) J , od) < [bd, %pc, % ri(* sci} J , od> Program counter memory indirect
with preindexing plus base and
outer displacement

xxx. w Absolute shon address (xxx
signifies an expression yielding a
16-bit memory address)

xxx. L Absolute long address (xxx
signifies an expression yielding a
32-bit memory address)

#xxx &XXX Immediate data (xxx signifies an
absolute constant expression)

In Table 6-6, the index register notation should be understood as ri. size* scale, where both
size and scale are optional. Section 2 of the MC68020 32-Bit Microprocessor User's Manual
provides information about generating effective addresses and assembler syntax.

Note that suppressed address register% zan can be used in place of %an, suppressed PC
register % zpc may be used in place of %pc, and suppressed data register % zdn may be used
in place of %ctn, if suppression is desired.

Address modes for the MC68020 use two different formats of extension. The brief format
provides fast indexed addressing, while the full format provides a number of options in size
of displacement and indirection. The assembler will generate the brief format if the effective
address expression is not memory indirect, value of displacement is within a byte, and no
base or index suppression is specified; otherwise, the assembler will generate the full format.

Chapter 6 The as assembler 6-23

Some variations of the MC68020 addressing modes may be redundant with the MC68000
address register indirect, address register indirect with displacement, and program counter
with displacement modes. The assembler will select the more efficient mode when
redundancy occurs. For example, when the assembler sees the form (An), it will generate
address register indirect mode.

The assembler will generate address register indirect with displacement when it encounters
any of the following forms (as long as bd fits in 16 bits or less):

bd(An)

(bd, An)

(An, bd>

Machine instructions

The general forms of an MC68020 processor instruction are

inst

inst operand

inst operand, operand

where inst is the instruction followed by 0, 1, or 2 operands. An operand can be actual data
(called an immediate operand) but often operand is the effective address of the data to be
used in the instruction.

Table 6-7 shows how MC68020 instructions should be written to ensure the as assembler
correctly understands them. Several abbreviations are used in Table 6-7:

A The letter A, as in add.A, stands for one of the address operation size
attribute letters w or 1, representing a word or long operation, respectively.

6-24 A/UX Development Tools

cc

d

EA

(eq)

FC

I

I

L

mask

In the contexts bCC, dbCC, and sCC, the letters CC represent any of the
following condition code designations (except that f and t may not be
used in the b CC instruction):

cc Carry clear
cs Carry set
eq Equal
f False
ge Greater or equal
gt G rearer than
hi High
hs High or same (=cc)
le Less or equal
lo Low(=cs)
ls Low or same
lt Less than
mi Minus
ne Not equal
pl Plus
t True
vc Overflow clear
vs Overflow set

2's-complement or sign-extended displacement that is added as part of
effective address calculation; the size may be 8 or 16 bits; when omitted,
assembler uses value of 0.

An arbitrary effective address.

The two forms of machine instruction are equivalent.

A function code that can be a data register, 0/osfc, o/odfc, or an absolute
expression with value 0-7 for MC68030 addressing or 0-15 for 68851
addressing.

An absolute expression representing a level, 0-7.

An absolute expression, used as an immediate operand.

A label reference, or any expression representing a memory address in the
current segment.

An absolute expression with value 0-7 for MC68030 addressing or 0-15 for
68851 addressing.

Chapter 6 The as assembler 6-25

offset

PCC

Q

s

width

Either an immediate operand or a data register.

One of the MC68851 PMMU condition codes.

An absolute expression evaluating to a number from 1 to 8.

The letter S, as in add. S, stands for one of the operation size attribute
letters b, w, or 1, representing a byte, word, or long operation, respectively.

Either an immediate operand or a data register.

Registers are designated using the following components:

%

a

d

r

x,y, m, n

Register call.

Address register.

Data register.

Either data or address register.

Any digit from O through 7, where x c;; y, m c;; n, and x c;; m,
and ye;; n.

These components are combined to form the following register designations:

%ax, %ay, %an

%dX, %dJ, %ctn

Address registers.

Data registers.

%mr (P)MMU register(%crp, %srp, %tt0 , %ttl , %drp, %pcsr, %psr, %cal ,
%val , %sec, %ac, %badX, %bacx).

%re Control register(%sfc, %dfc, %cacr, %vbr, %caar, %rnsp, %isp).

% rx, % ry, % m Either data or address registers.

(eq) The two forms of machine instruction are equivalent.

■ Table 6-7 MC68020 instruction formats

Mnemonic

ABCD

Assembler syntax

abcd.b
abcd.b

6-26 A/UX Development Tools

%dJ,%dX

- (%ay), - (%ax)

Operation

Add decimal with extend.

(Continued)

• Table 6-7 MC68020 instruction formats (Continued)

Mnemonic Assembler syntax Operation

ADD add.5 EA,%dn Add binary.
add.S %ctn, EA

ADDA add.A EA, %an Add address.
ADDI add.S &/,EA Add immediate.
ADDQ add.5 &Q,EA Add quick.
ADDX addx.5 %dy, %d.X Add extended.

adctx.S - (% a y) , - (% ax)
AND and.S EA, %ctn AND logical.

and.5 %ctn, EA
ANDI and.S &!, EA AND immediate.
ANDI to CCR and.b &!, %cc AND immediate to condition

code register.
ANDI to SR and.w &!, %sr AND immediate to the status

register.
ASL asl.S %d.X, %cty Arithmetic shift (left).

asl.S &Q, %dJ
asl.w &l,EA

ASR asr.S %d.X, %cty Arithmetic shift (right).
asr.S &Q, %dJ
asr.w &l, EA

Bee bCC L Branch conditionally (16-bit
displacement) .

bCC.b L Branch conditionally (short) (8-
bit displacement).

bCC.l L Branch conditionally (long) (32-
bit displacement).

BCHG bchg %ctn, EA Test a bit and change .
bchg &!, EA Note: bchg must be written with

no suffix. If the second operand
is a data register, . 1 is assumed;
otherwise, . b is used.

BCLR bclr %dn,EA Test a bit and clear.
bclr &!,EA Note: bclr must be written with

no suffix. If the second operand
is a data register, . 1 is assumed;
otherwise, . b is used.

BFCHG bfchg EA I offset: width I Complement bitfield.
BFCLR bfclr EA I offset: width Clear bitfield.

(Cominued)

Chapter 6 The as assembler 6-27

■ Table 6-7 MC68020 instruction formats (Continued)

Mnemonic Assembler syntax Operation

BFEXTS bfexts EA! offset: width!, %ctn Extract birfield (signed).
BFEXTU bfex tu EA! offset: width!, %ctn Extract birfield (unsigned).
BFFFO bfffo EA! offset: width!, %ctn Find first one in birfield.
BFINS bfins %ctn, EA! offset: width! Insert birfield.
BFSET bfset EA ! offset: width I Set bitfield.
BffST bftst EA! offset: width I Test birfield.
BKPT bkpt &! Breakpoint.
BRA bra.S L Branch always.

br.S L Same as bra. S.
BSET bset %ctn,EA Test a bit and set.

bset &!,EA Note: bset must be written with
no suffix. If the second operand
is a data register, . 1 is assumed;
otherwise, . b is used.

BSR .. bsr . S L Branch to subroutine.
BTST btst %ctn,EA Test a bit and set.

btst &l, EA Note: btst must be written with
no suffix. If the second operand
is a data register, . 1 is assumed;
otherwise, . b is used.

CALLM callm &!,EA Call module.
CAS cas.S %d.X, %cty, EA Compare and swap operands.
CAS2 cas2.S %d.X: %cty, %ctm: %ctn, Compare and swap dual

(% 1'.X) : (% 1)1) operands.
CHK chk.A EA,%ctn Check register against bounds.
CHK2 chk2.S EA, %rn Check register against bounds.
CLR clr.S EA Clear an operand.
CMP cmp.S %ctn, EA Compare. 2

CMPA cmpa.A %an, EA Compare address 2, 3

CMPI cmpi.S EA,&! Compare immediate. 2, 3

CMPM cmpm.S (%aX) +, (%ay) + Compare memory. z, 3

CMP2 cmp2.S %rn, EA Compare register against
bounds. 3

(Continued)

2The order of operands in as is the reverse of that in the MC68000 Programmer's Reference Manual.

3Toe cmp. S syntax is also recognized.

6-28 A/UX Development Tools

■ Table 6-7 MC68020 instruction formats (Continued)

Mnemonic Assembler syntax Operation

D&c dbCC %ctn, L Test condition, decrement, and
branch

dbra %ctn, L Decrement and branch always.
DIVS ctivs.w EA, %d..X Signed divide 32/16-> 16r:16q.

tctivs.l EA, %ct..x Signed divide (long)
32/32 -> 32q.

ctivs.l EA, %d..X Signed divide (long)
32/32 -> 32r:32q. 4

ctivs.l · EA, %d..X: %cty
DIVSL tctivs.l EA, %d..X: %dy Signed divide (long)

64/32 -> 32r:32q.
DIVU divu.w EA, %ctn Unsigned divide 32/16-> 16r:16q.

tdivu.l EA, %d..X Unsigned divide (long)
32/32 -> 32(eq).

ctivu.l EA, %d..X
DIVUL divu.l EA, %d..X: %dy Unsigned divide (long)

64/32 -> 32r:32q. 5

tdivu . l EA, %d..X : %dy Unsigned divide (long)
32/32 -> 32r:32q. 6

EOR eor.S %dn, EA Exclusive OR logical
EORI eor.S &I, EA Exclusive OR immediate.
EORI to CCR eor.b &I, %cc Exclusive OR immediate to

condition code register.
EORI to SR eor.w &/, %sr Exclusive OR immediate to the

status register.
EXG e xg %rx, %ry Exchange registers.
EXT e x t.w %dn Sign-extend low-order byte of data

to word.
ext.l %dn Sign-extend low-order word of

data to long.
EXTB extw.l %ctn Same as ext .1 .

e x tb.l %dn Sign-extend low-order byte of data
to long.

4whenever %dxand %dyare the same register, then the form is equivalent to the di vs .1£4, %d.X form.

Swhenever %dx and %dy are the same register, then the form is equivalent to the di vu .1 £4, %dxform

6whenever %d x and %dy are the same register, then the form is equivalent to the tdi vu .1 EA, %d x form.

Chapter 6 The as assembler 6-29

(Continued)

■ Table 6-7 MC68020 instruction formats (Continued)

Mnemonic Assembler syntax Operation

ILLEGAL illegal Illegal instruction.
]MP jmp EA Jump.
JSR jsr EA Jump to subroutine.
LEA lea EA, %an Load effective address.
UNK link.A %an,&! Link and allocate.
LSL lsl.S %dX, %dJ Logical shift (left).

lsl. S &Q, %dJ
lsl.S EA

LSR lsr.S %dX, %dy Logical shift (right).
lsr.S &Q,&cty
lsr.S EA

MOVE move.S EA,EA Move data from source to
destination. 7, 8

MOVE to CCR move.w EA, %cc Move to condition code register. 7

MOVE from move.w %cc,EA Move from condition code
CCR register. 7

MOVE to SR move.w EA, %sr Move to the status register. 7

MOVE from SR move.w %sr,EA Move from the status register. 7

MOVE USP move.l %usp, %an Move user stack pointer. 7

move.l %an, %usp

MOVEA move.A EA,%an Move address. 7

MOVEC move.l %re, %rn Move from/to control register. 7

move.l %rn, %re
MOVEM movem.A EA,&! Move multiple registers. 7, 9

movem.A &!, EA
MOVEP movep.A %dX, d(%ay) Move peripheral data. 7

movep.A d(%ay), %dX
MOVEQ move.l &!, %ctn Move quick. 7

71n all move commands, move may be shortened to mov.

8If the destination is an address register, r.he instruaion generated is MO VEA.

9-rhe immediate operand is a mask designating which registers are to be moved to memory or which are to
receive memory data. Not all addressing modes are permitted, and r.he correspondence between mask bits and
register numbers depends on the addressing mode.

6-30 A/UX Development Tools

~-

MOVES moves.S
moves.S

%rn, EA
EA, %rn

■ Table 6-7 MC68020 instruction formats (Continued)

Mnemonic Assembler syntax

MULS muls.w EA, %d.X

tmuls.l EA, %d.X

muls.l EA, %d.X

muls.l EA, %d.X: %ctJ

MULU mulu . w EA, %d.X

tmulu.l EA, %d.X

mulu.l EA, %d.X

mulu.l EA, %d.X: %ctJ

NBCD nbcct EA
NEG neg.S EA
NEGX negx. S EA
NOP nop
NOT not.S EA
OR or.S EA, %ctn

or.S %ctn, EA
ORI ori.S &!, EA

ORI to CCR ori.w &!, %cc

ORI to SR ori.w &!, %sr

PACK pack - (%aX), - (%ay), &/

pack %d.X, %cty, &!

Move to/from address space. 7

(Continued)

Operation

Signed multiply
16·16 -> 32.
Signed multiply (long)
32'32 -> 32 (eq) .

Signed multiply (long)
32•32 -> 64.
Unsigned multiply
16°16-> 32.
Unsigned multiply (long)
32'32 -> 32(eq).

Unsigned multiply (long)
32'32 -> 64.
Negate decimal with extend.
Negate.
Negate with extend.
No operation.
Logical complement.
Inclusive OR logical.

Inclusive OR immediate.
Equivalent to or. S.
Inclusive OR immediate to
condition code register.
Equivalent to or . w.
Inclusive OR immediate to
the status register. Equivalent
toor.w.
Pack BCD.

Chapter 6 The as assembler 6-31

PFLUSH pflush FC, &mask

■ Table 6-7 MC68020 instruction formats (Continued)

Mnemonic Assembler syntax

PFLUSH pflush FC, & mask, EA

PFLUSHS pflushs FC, &mask

pflushs FC, & mask, EA

PFLUSHA pflusha

PFLUSHR pflushr EA

PLOADR ploadr FC, EA

PLOADW ploadw FC, EA

PMOVE pmove %mr, EA

pmove EA, %mr

PMOVEFD pmove EA, %mr

PRESTORE prestore EA
PSAVE psave EA
PTESTR ptestr FC, EA,&!

Invalidate set of ATC.entries with
the given function code IO

(Continued)

Operation

Invalidate set of ATC.entries with the
given function code and effective
address. 10

Invalidate set of ATC.entries with the
given function code, even if SGS bit
is set. 11

Invalidate set of ATC.entries with the
given function code and effective
address, even if SGS bit is set. IO

Invalidate all entries in the A TC. 10

Invalidate A TC and RPT entries
matching effective address.11

Load an entry into the ATC for read
access. 10

Load an entry into the A TC for write
access. 10

Move data from MMU register to
destination. IO

Move data from destination to MMU
register. 10

Move data from destination to MMU
register. 12

Restore function. 11

Save function. 11

Get information about logical
address; set bit for read. 10

10rhese instructions are available on MC68030 and MC68851 only; additional MC68851 instructions are shown in
Table 6-14.

11These instructions are available on the MC68851 only.

12Tois instruction is available on the MC68030 only.

6-32 A/UX Development Tools

ptestr FC, EA,&!, %ax

PTES1W ptastw FC, EA,&!

ptestw FC, EA,&!, %ax

■ Table 6-7 MC68020 instruction formats (Continued)

Mnemonic Assembler syntax

PTRAPpcc ptrap PCC
PVALID pvalid %val, EA

pvalid %ax, EA

PEA pea EA
RESET reset

ROL rol.S %dX,%dJ

rol.S &Q, %dJ
rol.w EA

ROR ror.S %dX, %dJ

ror . S &Q, %dJ

ror.w EA
ROXL roxl.S %dX, %dJ

roxl.S &Q, %dJ

roxl.w EA
ROXR roxr.S %dX,%dJ

roxr.S &Q, %dJ

roxr.w EA
RID rtd &!

RTE rte %rn

RIM rtm

RTR rtr

RTS rts

SBCD sbcd %dy, %dX

sbcd · - (%ay>, -(%aX)

Get information about logical
address and load register; set bit
for read. 10

Get information about logical
address; set bit for write. 10

Get information about logical
address and load register; set bit
for write. 10

Operation

Trap on PMMU condition. 11

Validate a pointer against VAL
register. 11

Validate a pointer against
address register. 11

Push effective address .
Reset external devices .
Rotate left without extend.

Rotate right without extend)

Rotate left with extend.

Rotate right with extend.

Return and deallocate
parameters.
Return from exception.
Return from module.
Return and restore condition
codes.
Return from subroutine.
Subtract decimal with extend.

(Continued)

Chapter 6 The as assembler 6-33

Sec sCC EA Set according to condition.
STOP stop &I Load status register and stop.
SUB sub . S EA, %ctn Subtract binary.

%ctn, EA
SUBA sub.A EA, %an Subtract address.
SUBI sub.S &!, EA Subtract immediate (subi also

works).
SUBQ sub.S &Q,EA Subtract quick (subq also

works).

■ Table 6-7 MC68020 instruction formats (Continued)

Mnemonic Assembler synux Operation

SUBX subx.S %cty, %d.X Subtract with extend.
- (%ay), - (%aX)

SWAP swap %ctn Swap register halves.
TAS tas EA Test and set an operand.
TRAP trap &I Trap.
TRAPV trapv Trap on overflow.
TRAPcc tCC Trap on condition (eq).

trapCC

tpCC.A &!
trapCC. A &! (eq)

TST tst.S EA Test an operand.
UNLK unlk %an Unlink.
UNPK unpk - (%aX), -(%ay),&/ Unpack BCD.

unpk %d.X, %cty, &!

Instructions for the MC68881

All A/UX-capable systems are equipped with floating-point coprocessor capability (on some
systems this is embedded in the MC68030 processor). The coprocessor uses special
instructions, the understanding of which requires an introduction to concepts new to
programmers who have not used such coprocessors before.

A/UX and the MC68881 coprocessor fully support the IEEE standard for handling NaN (Not a
Number) conditions. To maximize flexibility there are two modes of handling unordered
conditions: non-IEEE and IEEE. These condition codes are shown in Tables 6-8 and 6-9
respectively. Non-IEEE conditions codes are used in two cases:

6-34 A/UX Development Tools

(Continued)

■ when porting a program that does not support the IEEE standard

■ when generating code that does not support the IEEE floating-point concepts (for
example, the unordered condition)

When non-IEEE condition codes are used, an exception is generated if an unordered
condition is found. It is the responsibility of the application to test for and handle these
conditions. Generally, AIUX users will want to use the IEEE condition codes.

■ Table 6-8 Non-IEEE condition codes

cc Meaning

ge Greater than or equal
gl Greater or less than
gle Greater or less than or equal
gt Greater than
le Less than or equal
lt I.ess than
ngt Not greater than
nge Not (greater than or equal)
nlt Not less than
ngl Not (greater or less than)
nle Not (less than or equal)
ngle Not (greater or less than or equal)
sneq Signaling not equal
sf Signaling false
seq Signaling equal
st Signaling true

■ Table 6-9 IEEE condition codes

cc Meaning

eq Equal
oge Ordered greater than or equal
ogl Ordered greater or less than
ogt Ordered greater than
ole Ordered less than or equal
olt Ordered less than

Chapter 6 The as assembler 6-35

or Ordered
t True
ule Unordered or less or equal
ult Unordered or less than
uge Unordered or greater than or equal
ueq Unordered or equal
ugt Unordered or greater than
un Unordered
neq Not equal
f False

The floating-point coprocessor also supports a set of standard constants that are kept in ROM.
The MC68881 constant ROM values are shown in Table 6-10. In this table, ccc indicates a
constant condition code designator.

■ Table 6-10 Constants in MC68881 ROM

CCC Value CCC Value

Ox O pi 3x 5 10••4
OxB log10(2) 3x 6 10••3
Oxc e 3x 7 10•·16
OxD log2(e) 3x 8 10••32
Ox E loglO(e) 3x9 · 10••64
OxF 0.0 3xA 10··128
3x 0 ln(2) 3x B 10·•256
3x l ln(l0) 3x C 10••512
3x2 10·-o 3xD 10··1024
3x 3 10··1 3xE 10**2048
3x 4 10··2 3xF 10"4096

Table 6-11 shows how the floating-point coprocessor (MC68881) instructions should be
written to be understood by the as assembler. Abbreviations used in Table 6-11 are

A Source fonnat letters w or 1

B Source fonnat letters b, w, 1, s , or p

CC Any of the floating-point condition code designations listed in Table 6-8 and
Table 6-9.

6-36 A/UX Development Tools

CCC

EA

I

L

SF

%control

%ctn

%fpcr

%fpiar

%fpm, %fpn,%fpq

%fpsr

%iaddr

%status

Any of the ROM constants listed in Table 6-10.

An effective address

An absolute expression, used as an immediate operand

A label reference or any expression representing a memory address in the
current segment

Source format letters:
b=byte integer
ct=double precision
l=long word integer
p=packed binary code decimal
s=single precision
w=word integer
x=extended precision

♦ Note: The source format must be specified if more than one source
format is permitted, otherwise a default source format of extended
precision (x) is assumed. Source format need not be specified if only
one format is permitted by the operation.

Floating-point control register

Data register, where O :::; n :::; 7

Floating-point control register

Floating-point instruction address register

Floating-point data registers, where m, n, and q are digits from O through 7

Floating-point status register

Floating-point instruction address register

Floating-point status register

Chapter 6 The as assembler 6-37

■ Table 6-11 MC68881 instruction formats

Mnemonic Assembler syntax Operation

FABS fabs. SF EA, %tpn Absolute value function .
fabs.x %fpm, %fpn

fabs .x %fpn

FACOS facos . SF EA, %fpn Arccosine function.
facos .x %fpm, %fpn

facos.x %tpn

FADD fadd. SF EA, %tpn Floating-point add.
fadd.x %fpm, %fpn

FASIN fa sin. SF EA, %fpn Arcsine function.
fasin. x %fp m, %fpn

fasin. x %fpn

FATAN fat an. SF EA, %fpn Arctangent function.
'

fatan.x %fpm, %fpn

fatan.x %fpn

FATANH fatanh.SF EA, %fpn Hyperbolic arctangent function .
fatanh. x %fpm, %fpn

fatanh.x %fpn

FBcc fbCCA L Coprocessor branch
conditionally.

FCMP fcmp . SF %fpn, EA Floating-point compare. 13

fcmp. x %fpn, %fpm

FCOS fcos. SF EA, %fpn Cosine function.
fcos. x %fpm, %fpn

fcos.x %fpn

FCOSH fcosh.SF EA,%fpn Hyperbolic cosine function.
fcosh.x %fpm, %fpn

fcosh .x %fpn

'rhe order of operands in as is the reverse of that in the MC6888J Programmer's Reference Manual.

(Continued)

■ Table 6-11 MC68881 instruction formats (Continued)

13rhe order of operands in as is the reverse of that in the MC68881 Programmer's Reference Manual.
,.--.... ..

6-38 A/UX Development Tools

.,---

Mnemonic Assembler syntax

FDBcc fdbCC.w %ctn, L

FDIV fdiv. SF EA, %fpn

fdiv.x %fpm, %fpn

FETOX fetox. SF EA, %fpn

fetox.x %fpm, %fpn

fetox.x %fpn

FETOXMl fetoxml . SF EA, %fpn

fetoxml.x %fpm, %fpn

fetoxml.x %fpn

FGETEXP fgetexp. SF EA, %fpn

fgetexp .x %fpm, %fpn

fgetexp.x %fpn

FGETMAN fgetman.SF EA, %fpn

fgetman.x %fpm, %fpn

fgetman.x %fpn

FINT fint.SF EA, %fpn

fint.x %fpm, %fpn

fint.x %fpn

FINTRZ fintrz. SF EA, %fpn

fintrz.x %fpm, %fpn

fintrz.x %fpn

FLOG2 flog2. SF EA, %fpn

flog2.x %fpm, %fpn

flog2.x %fpn

FLOGlO floglO. SF EA, %fpn

floglO.x %fpm,%fpn

floglO.x %fpn

■ Table 6-11 MC68881 instruction formats (Continued)

Mnemonic

FLOGN

FLOGNPl

Assembler syntax

flogn.SF EA,%fpn

flogn.x %fpm, %fpn

flogn.x %fpn

flognpl.SF EA,%fpn

flognpl.x

flognpl .x

%fpm, %fpn

%fpn

Operation

Decrement and branch on
condition.
Floating-point divide.

ff function.

ff (x-n function.

Get the exponent function .

Get the mantissa function.

Integer part function.

Integer part, round-to-zero
function.

Binary log function.

Common log function.

(Continued)

Operation

Natural log function.

Natural log (x+ 1) function.

Chapter 6 The as assembler 6-39

FMOD fmoct. SF EA, %tpn Floating point modulo.
fmoct.x %fpm, %fpn

FMOVE mov.SF EA, %tpn Move to floating-point register. 14

fmov.x %fpm, %fpn

fmove.SF %tpn, EA Move from floating-point register
to memory. 14

fmove.p %fpn, EA! &/J

fmove.p %fpn, EA! %ctn)
fmove.l EA, % control Move from memory to special

register. 14

fmove.l EA, %status
fmove.l EA, %iaddr
fmove.l % control, EA Move to memory from special

register. 14

fmove.l %status, EA
fmove.l %iaddr, EA

(Continued)

■ Table 6-11 MC68881 instruction formats (Continued)

Mnemonic Assembler syntax Operation

FMOVECR fmovcr.x &CCC, %fpn Move a ROM-stored value to a
floating-point register. 14, 15 , 16

FMOVEM fmovem.x EA,&! Move to multiple floating point
register. 14, 15

fmovem.x &!, EA Move from multiple registers to
memory. 14, 15

fmovem.x EA, %ctn Move to a data register. 14

fmovem.x %ctn, EA Move a data register to memory.
14

fmovem.l %control, EA Move to special registers Cl, 2, or
3 registers, separated by
commas). 14

fmovem.l %status, EA

14rn all (floating-point) move commands, move may be shortened to mov.

1Srhe immediate operand is a mask designating which registers are to be moved to memory or which registers
are to receive memory data. Not all addressing modes are permitted and the correspondence between mask bits
and register numbers depends on the addressing mode used.

l6see Table 6-10, "Constants in MC68881 ROM."

6-40 A/UX Development Tools

-~---

fmovem.l %iaddr, EA
fmovem.l EA, % control Move from special registers Cl , 2,

or 3 registers, separated by
commas). 14

fmovem.l EA, %status
fmovem.l EA, %iaddr

FMUL fmul.SF EA, %fpn Floating-point multiply.
fmul.x %fpm, %fpn

FNEG fneg.SF EA,%fpn Negate function.
fneg.x %fpm, %fpn
fneg.x %fpn

(Continued)

• Table 6-11 MC68881 instruction formats (Continued)

Mnemonic Assembler syntax Operation

FNOP fnop Floating-point no-op.
FREM frem.SF EA, %fpn Floating-point remainder.

frem.x %fpm, %fpn
FRESTORE frestore EA Restore internal state of

coprocessor.
FSAVE fsave EA Coprocessor save.
FSCALE fscale. SF EA, %fpn Floating-point scale exponent.

fscale.x %fpm, %fpn
FScc fsCC.b EA Set on condition.
FSGLDIV fsgldiv.B EA, %fpn Floating-point single-precision

divide.
fsgldiv.s %fpm, %fpn

FSGLMUL fsglmul.B fsglmul.s Floating-point single-precision
multiply.

fsglmul.s %fpm, %fpn
FSIN fsin. SF EA, %fpn Sine function.

fsin.x %fpm, %fpn
fsin.x %fpn

FSINCOS fsincos. SF EA,%fpn: %fpq Sine/cosine function .
fsincos.x %fpm, %fpn: %fpq

FSINH fsinh.SF EA, %fpn Hyperbolic sine function .
fsinh.x %fpm, %fpn
fsinh.x %fpn

FSQRT fsqrt.SF EA, %fpn Square root function .
fsqrt. x %fpm, %fpn

Chapter 6 The as assembler 6-41

FSUB

■ Table 6-11

Mnemonic

FTAN

FTANH

FTENTOX

FTcc

FTRAPcc

mcc

FTRAPcc

FTST

fIWOTOX

fsqrt.x

fsub. SF
fsub.x

%fpn

EA, %fpn

%£pm, %fpn

MC68881 instruction formats (Continued)

Assembler syntax

ftan. SF EA, %tpn

ftan.x %£pm, %fpn

ftan.x %fpn

ftanh. SF EA, %fpn

ftanh.x %£pm, %fpn

ftanh.x %fpn

ftentox.SF EA, %fpn

ftentox.x %fpm, %fpn

ftentox.x %fpn

ttCC

ftrapCC

ftpCC.A &!

ftrapCC. A &!

ftest. SF EA

ftest .x %fpm

ftst. SF EA
ftst.x %£pm

ftwotox.SF EA, %fpn

ftwotox.x %fpm, %fpn

ftwotox .x %fpn

6-42 A/UX Development Tools

Floating-point subtract.

(Continued)

Operation

Tangent function.

Hyperbolic tangent function.

lOXfunction.

Trap on condition without a
parameter.
Trap on condition without a
parameter. -~- ,

Trap on condition with a
parameter.
Trap on condition with a
parameter.
Floating-point test an operand
Note: The ftst form (floating-
point trap on signal true) is no
longer supported due to a
conflict with the FTST (floating-
point test an operand
instruction).

2z function.

Instructions for the MC68851

The tables in this section show how the paged memory management unit (PMMU) (MC68851)
instructions should be written to be understood by the as assembler.

The conditions that the PMMU tests can be either set or cleared. Tables 6-12 and 6-13 show
the mnemonics for these states. In Table 6-14, CC represents any of the condition code
designations depicted in Tables 6-12 and 6-13.

■ Table 6-12 PMMU condition codes: Condition is set

cc Meaning

bs Bus error
ls Limit violation
ss Supervisor violation
as Access level violation
ws Write protected
is Invalid
gs Gate
cs Globally shared

■ Table 6-13 PMMU condition codes: Condition is clear

cc Meaning

be Bus error
le Limit violation
SC Supervisor violation
ac Access level violation
we Write protected
ic Invalid
gc Gate
cc Globally shared

Additional abbreviations used in Table 6-14 are as follows:

D

EA

FC

Represents an absolute expression used as an immediate operand depth
level in the PTESTR/PTESTW instructions, where OS D $ 7.

Represents an effective address.

Represents one of the following function codes:

Chapter 6 The as assembler 6-43

I

L

M

%an

%ctn

I

%dfc

%ctn
%sfc

%sfcr

An absolute expression used as an
immediate operand.
The destination function code register.
A data register.
The source function code register.
The source function code register.

Represents an absolute expression used as an immediate operand.

A label reference or any expression representing a memory address in the
current segment.

Represents an absolute expression used as an immediate operand mask in
the PFLUSH/ PFLUSHS instructions, where OS MS 15.

Represents an address register O through 7.

Represents a data register O through 7.

Represents one of the following PMMU registers:
%ac Access control register
%bac Breakpoint acknowledge control register O through 7
%bad Breakpoint acknowledge data register O through 7
%cal Current access level register
%crp CPU root pointer register
%drp DMA root pointer register
%pcsr Cache status register
%psr Status register
%sec Stack change control register
% s rp Supervisor root pointer register
%tc Transition control register
%val Validate access level register

+ Note: The source format must be specified if more than one source
format is permitted, otherwise a default source format of w is assumed.
Source format need not be specified if only one format is permitted by
the operation.

■ Table 6-14 MC68851 instruction formats

6-44 A/UX Development Tools

Mnemonic Assembler syntax Operation

PBcc pbCC.A L Branch on PMMU condition.
PDBcc pdbCC.w %ctn, L Test, decrement, branch.
PFLUSH pflush FC,&M Invalidate entries in ATC.

pflush FC, &M, EA
PFLUSHA pflusha Invalidate all ATC entries.
PFLUSHS pflushs FC,&M Invalidate entries in ATC

including shared entries.
pflushs FC, &M, EA

PFLUSHR pflushr EA Invalidate ATC and RPT entries.
PLOADR ploadr FC,EA Load an entry into A TC.

(Continued)

Chapter 6 The as assembler 6-45

-----..

■ Table 6-14 MC68851 instruction formats (Continued)

Mnemonic Assembler syntax Operation

PLOADW ploadw FC,EA Load an entry into ATC.
PMOVE pmove.A %pm, EA Move PMMU register. 17

pmove.A EA, %pm
PRESTORE prestore EA PMMU restore function.
PSAVE psave EA PMMU save function.
PScc psCC EA Set on PMMU condition.
PTESTR ptestr FC,EA, &D Get information about logical

address.
ptestr FC, EA, &D, %an

PTESTW ptestw FC, EA, &D Get information about logical
address

ptestw FC, EA, &D, %an

PTRAPcc ptCC Trap on PMMU condition
ptrapCC

ptCC.A

ptrapCC.A
PVALID pvalid %val,EA Validate a pointer ' ,

pvalid %an, EA

17Toe pmov. syntax is also recognized

6-46 A/UX Development Tools

Chapter 7 The ld loader

This chapter describes the A/UX loader, ld, which creates executable object
files by combining object files, performing relocation, and resolving external
references. ld also processes symbolic debugging information. The input to
ld is made up of relocatable object files produced by a compiler, an
assembler, or a previous ld run. The loader combines these object files to
form either a relocatable or an absolute (executable) object file. In other
documentation the loader is also called a linker or link editor.

ld supports a command language that lets you control the loading process
with great flexibility and precision. Although the load process is controlled
in detail through use of this language (described later), most programmers
do not require this degree of flexibility, and the manual page 1ct(l) in AIUX
Command Reference will provide them with sufficient instruction in the use
of this command. This chapter is a reference to enable you to determine
what ld has done to your code.

The command language allows the loader to

■ specify the machine's memory configuration

■ combine object file sections in particular fashions

■ cause the files to be bound to specific addresses or within specific
portions of memory

■ define or redefine global symbols at load time

7-1

Using ld

To use the loader, give the following command:

1 ct [options] filename ...

Files passed told must be object files, archive libraries containing object files, or text source
files containing ld directives. ld uses the file's magic number(the first 2 bytes of the file) to
determine which type of file it is encountering. If ld does not recognize the magic number, it
assumes the file is a text file containing ld directives and attempts to parse it.

Input object files and archive libraries of object files are loaded together to form an output
object file. If there are no unresolved references, the file should be executable. For additional
information, see the section "Object Files" later in this chapter.

Object files have the form name. o throughout the examples in this chapter. The names of
actual input object files need not follow this convention.

If you merely want to load the object files ft/el. o and file2. o, this command is enough:

ld fl/el. o fi/e2. o

No directives to ld are needed. If no errors are encountered during the load, the output is left
in the default file a. out. '

The input file sections are combined in order. That is, if each of ft/el. o and file2. o contains
the standard sections . text, . data, and . bss, the output object file also contains these
three sections. The output . text section is a concatenation of . text fromfilel . o and
file2. o. The . data and . bss sections are formed similarly. The output . text section is
then bound at address OxOOOOOO. The output . data and . bss sections are loaded together
into contiguous addresses.

Instead of entering the names of files to be loaded, or entering ld options on the ld
command line, you can place this information in a separate file and simply pass the file told.
Such an input file containing loader directives is referred to as an i-file in this chapter. Its
usefulness is explained in the paragraphs that follow. An i-file named ctefaul t. ld is
searched for automatically in the list of library directories (see the -1 and - L options under
"Options"). The default directory for this search is /usr /lib.

For example, if you frequently load the object files ft/el. o, file2. o, and file3. o with the
same options fl and /2, you could enter the command ·

ld -fl -/2 fl/el. o fi/e2. o ji/e3. o

each time you have to invoke ld. Alternatively, you could create an i-file containing the
statements

7-2 A/UX Development Tools
nnn-nnnn

-f
-/2
ft/el. o
ftle2. 0 ftle3. 0

and use the following command:

ld ifi/e

Note that it is permissible to specify some of the object files to be loaded in the i-file and to
specify others on the command line, as well as specifying some options in the i-file and others
on the command line. Note also that either white space or newlines can separate the
statements in an i-file. Input object files are loaded in the order they are encountered, whether
on the command line or in an i-file. As an example, if a command line were

ld ft/el. o ifi/e ft/e2. o

and the i-file contained

ftle3. 0

ftle4. 0

the order of loading would be

1. ft/el. o

2. fi/e3. o

3. fi/e4. o

4. ft/e2. o

Note from this example that an i-file is read and processed immediately upon being
encountered in the command line.

Loader concepts

There are several concepts and definitions with which you should become familiar before you
proceed further.

Chapter 6 The ld loader 7-3
nnn-nnnn

Memory configuration

The virtual memory of an A/UX system is, for purposes of allocation, partitioned into
configured memory and unconfigured memory. Configured memory indicates a range of
memory for which the appropriate single in-line memory modules (SIMMs) have been
installed and are available for use. Unconflgured memory denotes a range of memory for
which no chips have been installed, or that is reserved by the operating system or the nuBus
address space. The default is to treat all memory as configured.

♦ Note: Nothing can be loaded into unconfigured memory.

Specifying a certain memory range as unconfigured is one way of marking the addresses in
that range as illegal or nonexistent with respect to the loading process. Memory
configurations other than the default must be specified explicitly.

Unless otherwise specified, all discussion in this chapter of memory, addresses, and so on,
concerns the configured sections of the address space.

Sections

A section of an object file is the smallest unit of relocation and must be a contiguous block of
memory. You can identify a section with a starting address and a size. Information describing
all the sections in a file is stored in section headers at the start of the file. Sections from input
files are combined to form output sections that contain executable text, data, or a mixture of
both. Although there may be holes or gaps between input sections (and between output
sections), storage is allocated contiguously within each output section and may not overlap a
hole in memory.

Addresses

The physical address of a section or symbol is the relative offset from address O of the
address space. The physical address of an object is not necessarily the location at which it is
placed when the process is executed. For example, on a system with paging, the address is
relative to address O of the virtual space, and the system perfonn.5 another address translation.

7-4 A/UX Development Tools
nnn-nnnn

Binding

You may need to have a section begin at a specific, predefined address in the address space.
The process of specifying this starting address is called binding, and the section in question
is said to be "bound to" or "bound at'' the required address. While binding is most commonly
relevant to output sections, you can also bind global symbols with an assignment statement in
the ld command language.

Object files

Object files are produced both by the assembler (typically as a result of calling the compiler)
and by ld. ld accepts relocatable object files as input and produces an output object file that
may or may not be relocatable. Under certain special circumstances, the input object files
given to ld may also be absolute files (see the section "Nonrelocatable Input Files" for
details).

Files produced by the compiler or assembler always contain three sections: (files using shared
libraries contain additional sections):

. text

. data

. bss

Contains the instruction text (for example, executable instructions) .

Contains initialized data variables .

Contains uninitialized data variables .

Files using shared libraries contain two additional sections:

. init Contains shared library initialization fragments .

.lib Contains the pathname to the shared library (for files using shared library
executable files).

Files calling shared library executable files also contain dummy sections corresponding to the
sections of the shared object file. For additional information, see Chapter 7, "Shared Libraries,"
in AIUX Programming .languages and Tools, Volume 1.

Here is an example of a typical (nonshared library) C program. If the source contained the
following global declarations (not declared inside a function),
inti= 100;
char abc[200];

and the following assignment,
abc[i] = 0;

compiled code from the C assignment would be stored in . text, the variable i would be
located in . data, and abc would be located in . bss.

Chapter 6 The ld loader 7-5
nnn-nnnn

There is an exception, however, to the rule: both initialized and uninitialized statics are
allocated to the . data section (the value of an uninitialized static in a . dat a section is 0).

Options

You can intersperse options with filenames both on the command line and in an i-file. The
ordering of options is not significan~ except for the 1 and L options for specifying libraries.

The 1 option is shorthand notation for specifying an archive library, which is a collection of
object files. Thus, as is the case with any object file, libraries are searched as they are
encountered. The L specifies an alternative directory for searching for libraries. To be
effective, an -L option must therefore appear before any -1 options.

All options for ld must be preceded by a hyphen(-), whether in the i-file or on the ld

command line .. Options that have an argument (except for the -1 and - L options) are
separated from the argument by white space (blanks or tabs). Table 7-1 lists the supported
options:

■ Table 7-1 ld options

Option Description

-A/actor Expands the default symbol table by the factor given.
-F Performs the alignment necessary for demand paging. Sections will be aligned on

stricter boundaries in the address space. Sections will be blocked in the output file so
that they begin on file system block boundaries. In addition, the magic number 0413.
will be stored in the file header.

- Ldir Changes the algorithm for searching for libraries to look in dir before looking in the
default location. This option is used for ld libraries in the same way the - r option is
for compiler t include files. The - L option is useful for finding libraries that are not
in the standard library directory. To be useful, though, this option must appear before
the -1 option.

-M Prints a warning message for all external variables that are multiply-defined.
-N Adjusts the load point of the data section so that it will immediately follow the text

section when loaded and stores the magic number 0407 in the header. This prevents
the text from being shared (shared text is the default).

-s Requests a silent ld run. All error messages from errors that do not immediately stop
the ld run are suppressed.

(Cominued)

7-6 A/UX Development Tools
nnn-nnnn

.___

···- ·-------------------

■ Table 7-1 ld options (Continued)

Option Description

-v Prints, on the standard error output, a version id identifying the version of ld
involved.

-vs num Takes num as a decimal version number identifying the a. out file that is produced.
The version stamp is stored in the system header. This option is not directly
recognized by the compiler (cc), so you must use the -w option to pass the version
number to the loader; for example,

-Wl,-VS num

where -w is an option to cc allowing arguments to be passed, 1 stands for the loader
(the arguments' destination), and _;vs num are the arguments told that set the
version number for the a. out file. Note that the space between -vs and num is
required.

-ess Defines the primary entry point of the output file to be the symbol given by the
argument ss.

- f bb Sets the default fill value. The argument bb is a 2-byte constant. This value is used to
fill holes formed within output sections. It is also used to initialize input . bs s

sections when they are combined with other non . bss input sections. If you don't
use the -f option, the default fill value is O for all sections except the . tv section,
whose default fill value is OxFFFF.

-ild Generates the sections reserved for use by the incremental loader.
-ild invokes the -r option.

- ifile Specifies an archive library file as 1 d input. The argument file is a character string
(less than ten characters) immediately following the -1 without any intervening white ·
space. As an example, -le refers to libc. a, -le to libC. a, and so on. The given
archive library must contain valid object files as its members. The directory searched
defaults to usr/lib, finding usr/lib/libc. a, usr/lib/ l _ibC. a, and so on.
(See also the - L option.)

-m Produces a map or list of the input/output sections (including holes) on the standard
output.

-onn Names the output object file. The argument nn is the name of the A/UX system file to
be used as the output file . The default output object filename is a. out . The option
nn may be a full or partial A/UX pathname.

-r Retains relocation entries in the output object file. Relocation entries must be saved if
the output file is to be used as an input file in a subsequent ld call. If the -r option is
used, unresolved references do not prevent the creation of an output object file (such
a file is not executable, of course).

(Coruinued)

Chapter 6 The ld loader 7-7
nnn-nnnn

■ Table 7-1 ld options (Continued)

Option

-s

-t

-usym

-x

-z

Description

Strips line number entries and symbol table information from the output object file.
Because relocation entries (-r option) are meaningless without the symbol table, you
may not use -r if you use -s. All symbols are stripped, including global and
undefinedsymboIB.
Disables checking of all instances of a multiply-defined symbol to be sure they are the
same size.
Introduces an unresolved external symbol into the output file's symbol table. The
argument sym is the name of the symbol. This option is useful for loading entirely
from a library, since the symbol table is initially empty and an unresolved reference is
needed to force the loading of an initial routine from the library.
Does not preserve any local (nonglobal) symbols in the output symbol table; enter
external and static symbols only. This option saves some space in the output file.
catches references through NULL pointers. The z is a mnemonic for "Do not place
anything in address O." This option is overridden if any section or memory directives
are used.

The ld command language

The command language of ld allows you control over all phases of the loading process.
Typically, ld operates on files created by as without needing your intervention. However,
you can write your own program specifying how ld is to manipulate the components of
object files.

Input to ld is a series of directives that together have the effect of combining various
reloctable input object files, binding all objects to known addresses, and resolving object
references so the resulting output object file is self-consistent and executable.

Expressions

Expressions can contain global symbols, constants, and most of the basic C language
operators (see the last section of this chapter, "Syntax Diagram for Input Directives").
Constants in ld are defined as in C, with a number recognized as decimal unless preceded
with o for octal or Ox for hexadecimal.

7-8 A/UX Development Tools
nnn-nnM

.,,,,--

♦ Note: All numbers are treated as type long int.

Symbol names may contain uppercase or lowercase letters, digits, and the underscore (_).
Symbols within an expression have the value of the address of the symbol only. ld does not
perform a symbol table lookup to find the contents of a symbol, the dimensionality of an
array, structure elements declared in a C program, and so on.

ld uses a lex-generated input scanner to identify symbols, numbers, operators, and so forth.
The current scanner design makes the following names reserved and unavailable as symbol
or section names:

ALIGN DSECT MEMORY PHY SPARE

ASSIGN GROUP NOLOAD RANGE TV

BLOCK LENGTH ORIGIN SECTIONS

align group length origin spare
assign 1 0 phy
block len org range

Supported operators are are shown in order of precedence in Table 7-2:

■ Table 7-2 Precedence of operators

Operator symbols

+ - (unary minus)
* I %

+ - (binary minus)
>> <<

!= > < <= >=

&

&&

I I
+= *= I=

These operators have the same meaning as in the C language. Precedence decreases from the
top to the bottom of the table. Operators on the same line have the same precedence.

Chapter 6 The ld loader 7-9
nnn-nnnn

Assignment statements

External symbols can be defined and assigned addresses via the assignment statement. The
syntax of the assignment statement is

symbol = expression:

or

symbol op = expression;

where op is one of the operators +, - , *, or /.

♦ Note: Assignment statements must terminate with a semicolon.

All assignment statements (with one exception, described in the following paragraph) are
evaluated after allocation has been performed. This occurs after all input file-defined symbols
are appropriately relocated, but before the actual relocation of the text and data itself.
Therefore, if an assignment statement expression contains any symbol name, the address
used for that symbol in the evaluation of the expression reflects the symbol address in the
output object file. References to symbols given a value through an assignment statement
within text and data access this latest assigned value. Assignment statements are processed in
the same order in which they are input to ld.

Assignment statements are normally placed outside the scope of any section-definition
directives (see the section "Section Definition Directivesn). There is a special symbol, dot(.),
however, that may occur only within a section-definition directive. This symbol refers to the
current address of the ld location counter. Thus, assignment expressions involving dot are
evaluated during the allocation phase of ld.

Assigning a value to the dot (.) symbol within a section-definition directive will increment or
reset the ld location counter and may create holes within the section (as described in
"Section Definition Directivesn).

Assigning the value of dot to a conventional symbol permits the final allocated address of a
particular point within the load run to be saved.

align is provided as a shorthand notation to allow you to align a symbol to an n-byte
boundary within an output section, where n is a power of 2. For example, the expression

align (n)

is equivalent to

(. + n - 1) & (n - 1)

7-10 A/UX Development Tools
nnn-nnM

Loader expressions can have either an absolute or a relocatable value, corresponding to a
type of absolute or relocatable. When ld creates a symbol through an assignment statement,
the symbol's value takes on the type of the expression. That type depends on the following
rules:

■ An expression with a single relocatable symbol (and O or more constants or absolute
symbols) is relocatable. The value is in relation to the section of the referenced symbol.

■ All other expressions have absolute values.

Specifying a memory configuration

MEMORY directives are used to specify

■ the total size of the virtual space of an A/UX system

■ the configured and unconfigured areas of the virtual space

If you do not supply any directives, ld assumes that all memory is configured. A/UX-capable
Macintosh computers have a minimum of 4 MB of RAM, and use a virtual memory space of 4
GB. Generally, the only reason you would want to specify MEMORY directives for an A/UX
application is to run it explicitly in physical, rather than virtual, memory space.

Using MEMORY directives, you can assign an arbitrary name of up to eight characters to a
virtual address range. Output sections can then be forced to be bound to virtual addresses
within specified memory areas. Memory names may contain uppercase or lowercase letters,
digits, and the three special characters s, . , or_. Names of memory ranges are used only by
ld and are not carried in the output file symbol table or headers.

♦ Note: When you use MEMORY directives, all virtual memory that is not described in a
MEMORY directive is considered to be unconfigured. ld does not use unconfigured
memory in the allocation process, hence nothing can be loaded, bound, or assigned to an
address within unconfigured memory.

As an option on the MEMORY directive, you may associate attributes with a named memory
area. This restricts the memory areas (with specific attributes) to which an output section may
be bound. The attributes you assign to output sections are recorded in the appropriate section
headers in the output file to allow for possible error checking in the future. For example,
putting a text section into writable memory is one potential error condition. Currently, error
checking of this type is not implemented.

The attributes currently accepted are

R readable memory

Chapter 6 The ld loader 7-11
nnn-nnnn

w writable memory

x executable (instructions may reside in this memory)

r initializable (stack areas are typically not initialized)

Other attributes may be added in the future if necessary. If you do not specify any attributes
on a MEMORY directive or if you do not supply any MEMORY directives, memory areas assume
all of the attributes of w, R, r, and x.

The syntax of the MEMORY directive is

MEMORY
{

name (attn : origin virt-addr[,] length mem-/ength

The keyword origin (or org or o) must precede the origin of a memory range, and
length (or len or 1) must precede the length, as shown in the preceding prototype. The
origin operand refers to the virtual address of the memory range. origin and length

are entered as long integer constants in decimal, octal, or hexadecimal (standard C syntax).
Origin and length specifications, as well as individual MEMORY directives, may be separated
by white space or a comma.

By specifying MEMORY directives, you can tell 1ct that memory is configured in some manner
other than the default. For example, if you need to prevent anything from being loaded to the
first OxlOOOO words of memory, you can do so with a MEMORY directive:

MEMORY
{

valid org = OxlOOOO, len

Region directives

OxFEOOOO

This implementation of A/UX does not suppon region specifications, which are usually used
only when developing UNIX® kernels.

7-12 A/UX Development Tools
nnn-nnnn

Section definition directives

You can use the SECTIONS directive to describe how input sections are to be combined, to
direct where output sections should be placed (both in relation to each other and to the entire
virtual memory space), and to permit the renaming of output sections. Sections in ld are
equivalent to segments in as.

In the default case (where no SECTIONS directives are given), all input sections of the same
name appear in an output section of that name. For example, if a number of object files from
the compiler are loaded, each containing the three sections . text, . data, and . bss, the
output object file will also contain three sections, . text, . data, and . bss. If two object
files are loaded, one containing sections s1 and s2, the other containing sections s3 and s4,
the output object file will contain the four sections s1, s2, s3, and s4. The order of these
sections depends on the order in which the loader sees the input files .

The basic syntax of the SECTIONS directive is

SECTIONS
{

secname

file-specification . . . ,
assignment-statement ...

The various types of section definition directives are discussed in the remainder of this
section.

File specifications

Within a section definition, the files and file sections to be included in the output section are
listed in the order in which they are to appear. Sections from an input file are specified by

filename (secname ... l

Sections of an input file are separated by white space or commas (or both), as are the file
specifications themselves.

If a filename appears with no sections listed, all sections from the file are loaded into the
current output section; for example,

Chapter 6 The ld loader 7-13
nnn-nnnn

SECTIONS
(

outsecl:
(

fl/el. o (secl)
.ft/e2. 0

.ft/e3. o < secl, sec2)

The order in which the input sections appear in the output section outsecl is given by

1. Section secl from file fl/el. o.

2. All sections from flle2. o, in the order they appear in the file.

3. Section secl from file .ftle3. o, then section sec2 from file flle3. o.

If any additional input files contain input sections named outsecl, these sections are loaded
following the last section named in the outsecl definition. If there are any other input sections
in fl/el. o or .ftle3. o, they will be placed in output sections with the same names as the input
sections.

Loading a section at a specified address

You may want to bond an output section to a specific virtual address to take advantage of a
particular paging efficiency. This can be done as shown in the following SECTIONS directive
example:

SECTIONS
(

outsec addr:
(

file-spec < secname)

addr is the bonding address, expressed as a C constant. If outsec does not fit at addr (perhaps
because of holes in the memory configuration or because outsec is too large to fit without
overlapping some other output section), ld issues an appropriate error message.

As long as output sections do not overlap and there is enough space, they may be bound
anywhere in configured memory. The SECTIONS directives that define output sections do
not have to be given to ld in any particular order.

7-14 A/UX Development Tools
nnn-nnM

ld does not ensure that each section's size consists of an even Ii.umber of bytes or that each
section starts on an even byte boundary. The assembler ensures that the size (in bytes) of a
section is evenly divisible by 4. Although it is not recommended, you can use the ld

directives to force a section to start on an odd byte boundary, if unforeseen circumstances
force you into this solution. If a section starts on an odd byte boundary, the section's contents
either are accessed incorrectly or are not executed properly. If you specify an odd byte
boundary, ld will issue a warning message.

Aligning an output section

You may request that an output section be bound to a virtual address that falls on an n-byte
boundary, where n is a power of 2. The ALIGN option of the SECTIONS directive performs
this function, so that the option

ALIGN (n)

is equivalent to specifying a bonding address of

. + n - 1) & (n - 1)

♦ Note: This ALIGN option is different than the align option discussed in the section
"Assignment Statements." ALIGN binds sections to an address boundary, while align

binds a specific object to an address boundary.

You should note that the as assembler always pads the sections it generates to a full word
length, making explicit alignment specifications unnecessary. This also holds true for the
compilers c89 and cc.

As an example of section alignment,

SECTIONS
{

outsec ALIGN (Ox2 0 0 0 0) :

file-spec (secname>

The output section outsec is not bound to any given address, but is loaded to some virtual
address that is a multiple of 0x20000 (for example, at address Ox0, 0x20000, 0x40000,
Ox60000, and so on).

Chapter 6 The 1 ct loader 7-15
nnn-nnnn

The default section alignment action for ld on MC68020 systems is to align the code (. text)

at byte 0 and the data(. data and . bss combined) at the 4-megabyte boundary (byte
10487576). Since MMU requirements vary from system to system, alignment is not always
desirable. The version of ld for MC68020 systems, therefore, .provides a mechanism to allow
the specification of different section alignments for each system, allowing you to align each
section separately on
n-byte boundaries, where n is a multiple of 512.

The default allocation algorithm for ld is

1. Load all input . text sections together into one output section. This output section is
called . text and is bound to an address of 0x0.

2. Load all input . data sections together into one output section. This output section is
called . data and is bound to an address aligned to a machine-dependent constant.

3. Load all input . bss sections together into one output section. This output section is
called . bss and is allocated so as to follow the output section . data immediately. Note
that the output section . bs s is not given any particular address alignment.

Specifying any SECTIONS directives results in this default allocation not being performed.

When all input files have been processed (and if no override is provided), ld will search the
list oflibrary directories (as with the -1 flag option) for a file named default. ld. If this file
is found, it is processed as an ld instruction file (or i-file). The default. ld file should
specify the required alignment as outlined in the following paragraphs. If it does not exist, the
default alignment action will be taken.

The default. ld file should appear as in the following example, with align-value replaced
by the alignment requirement in bytes. The default allocation of ld is equivalent to supplying
the following directive:

SECTIONS
{

. text : { }
GROUP ALIGN (align-value) :

.data

.bss

where align-value is a machine-dependent constant.

♦ Note: The current (MC68020) system requires a data rounding of 2 MB. This requirement
is subject to change as systems evolve.

7-16 A/UX Development Tools
nnn-nnM

The GROUP directive ensures that the two output sections, . data and . bss , are allocated
(grouped) together. Bonding or alignment information is supplied only for the group, and not
for the output sections contained within the group. The sections making up the group are
allocated in the order listed in the directive.

If you wish to place . text, . data, and . bss in the same segment, you should use the
following SECTIONS directive:

SECTIONS
{

GROUP
{

.text

.data

.bss

Note that there are still three output sections (. text, . data, and . bss), but they are now
allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting address or aligned simply by
adding a field to the GROUP directive. To bind to OxCOOOO, use

GROUP OxCOOOO: {

To align to OxlOOOO, use

GROUP ALIGN(OxlOOOO):

· With this addition, first the output section . text is bound at OxCOOOO (or is aligned to
OxlOOOO); the remaining members of the group are allocated into the next available memory
locations in order of their appearance.

When the GROUP directive is not used, each output section is treated as an independent
entity:

SECTIONS
{

. text: { }

.data ALIGN(Ox20000): { I

.bss: { I

The . text section starts at virtual address OxO and the . data section at a virtual address
aligned to Ox20000. The . bss section follows immediately after the . text section, but only
if there is enough space. If there is not, it follows the . data section.

The order in which output sections are defined told cannot be used to force a certain
allocation order in the output file.

Chapter 6 The 1 d loader 7-17
nnn-nnnn

------------- ---- ·--· -~

Files that need to load in a shared library have the . ini t and . text sections grouped
together. In the final stage of loading, the . ini t section becomes pan of the . text section.

Creating holes within output sections

The special symbol dot (.) appears only within section definitions and assignment
statements. When it appears on the left side of an assignment staternen~ . causes the ld

location counter to be incremented or rese~ and a hole is left in the output section.

Holes that are built into output sections in this manner take up physical space in the output
file and are initialized using a fill character (either the default fill character, OxOO, or a supplied
fill character). See the definition of the -f option in the section "Options" and the discussion
of filling holes in the section "Initialized Section Holes or . bss Sections" later in this chapter.

Consider the following section definition:

SECTIONS
{

outsec:

. += OxlOOO;
fl. o (. text)

. += OxlOO;
/2. o (. text)

. = align (4);
/3. o (. text)

The effect of this command is as follows:

1. A OxlOOO byte hole, filled with the default fill character, is left at the beginning of the
section. Input file fl.o (.text) is loaded after this hole.

2. The text of in put file /2. o begins at Ox 100 bytes following the end off 1 . o (. text l .

3. The text of J3. o is loaded to stan at the next full word boundary following the text of
f2. o with respect to the beginning of outsec.

For the purposes of allocating and aligning addresses within an output section, ld treats the
output section as if it began at address 0. If, in the above example, outsec is ultimately loaded
to stan at an odd address, the part of outsec built from f3. o (. text) also starts at an odd
address, even though/3. o (. text) is aligned to a full word boundary. You can prevent this
result by specifying an alignment factor for the entire output section:

outsec ALIGN (4) : {

7-18 A/UX Development Tools
nnn-nnnn

_ .. --

Expressions that decrement . are illegal. For example, subtracting a value from the location
counter is not allowed, since overwrites are not allowed. The most common operators in
expressions that assign a value to . are+= and align.

Creating and defining symbols at loading time

You can use the assignment instruction of ld to give symbols a value that is loading
dependent Typically, there are three types of assignments:

■ use of . to adjust the ld location counter during allocation

■ use of . to assign an allocation-dependent value to a symbol

■ assignment of an allocation-independent value to a symbol

The first case was discussed in the previous section. The second case provides a means to
assign addresses (known only after allocation) to symbols; for example,

SECTIONS
{

outscl: 1fi/e-spec (secname) l
outsc2:
{

fl/el. o (Sl)

s2 start =
fi/e2. o (S2)
s2 end = - l;

The symbol s2_start is defined to be the address of file2. o (S.2), and s2_end is the
address of the last byte of fi/e2. o (s2) . Consider the following example:

SECTIONS
{

outscl:
{

} .

fi/el. o (. data)

mark = . ;
. += 4;
fl/e2. o (. data)

In this example, the symbol mark is created and is equal to the address of the first byte
beyond the end of the fi/el. o . data section. Four bytes are reserved for a future run-time
initialization of the symbol mark. The type of the symbol is a long integer (32 bits).

Chapter 6 The ld loader 7-19
nnn-nnnn

Assignment instructions involving . must appear within SECTIONS definitions, since they
are evaluated during allocation. Assignment instructions that do not involve . can appear
within SECTIONS definitions, but typically do not. Such instructions are evaluated after
allocation is complete.

It is risky to reassign a defined symbol to a different address. For example, if a symbol within
. data is defined, initialized, and referenced within a set of object files being loaded, the
symbol table entry for that symbol is changed to reflect the new, reassigned physical address.
The associated initialized data are not moved to the new address. ld issues warning
messages for each defined symbol that is being redefined within an i-file. Assignments of
absolute values to new symbols are safe, however, because there are no references or
initialized data associated with the symbol.

Allocating a section into named memory

The loader provides a mechanism for allowing you to specify a section to be loaded somewhere within a
specific, named memory area (as previously specified on a MEMORY directive) using the > operator. The
> notation is borrowed from the UNIX system concept of redirected output. For example,

MEMORY
{

meml:
mem2 (RW):

memj (RW):

meml:

SECTIONS
{

o=OxOOOOOO
o=Ox020000
o=Ox070000
o=Oxl20000

outsecl: !/1. o (. data)
outsec2: !/2. o (. data)

> meml
> mem3

l=OxlOOOO
l=Ox40000
l=Ox40000
l=Ox04000

This code fragment directs ld to place outsecl at the first location within the memory area
named meml that is large enough to hold the section (somewhere within the address range
OxO-OxFFFF or ox120000-ox123FF). The outsec2is to be placed similarly in the
address range Ox70000-0xAFFFF.

Initialized section holes or . bss sections

When holes are created within a section (as in the example in the section "Creating Holes
Within Output Sections"), ld normally puts out bytes of zero as fill. By default, . bss sections
are not initialized at all; that is, no initialized data, not even Os, are generated for any . bss

section by the assembler, nor are they supplied by the loader.

7-20 A/UX Development Tools
nnn-nnM

__--...,__

You can use initialization options in a SECTIONS directive to set such holes or to set . bs s

sections to an arbitrary 2-byte pattern.

♦ Note: Such initialization options apply only to . bs s sections or holes.

For example, in an application you might want an uninitialized data table to be initialized to a
constant value, without recompiling the . o file or filling a hole in the text area with a transfer
to an error routine. You could specify that either specific areas within an output section or the
entire output be initialized. Because no text is generated for an uninitialized . bs s section,
however, the entire section is initialized if pan of such a section is initialized.

In other words, if a . bss section is to be combined with a . text or . data section (both of
which are initialized), or if pan of an output . bs s section is to be initialized, one of the
following will hold:

■ Explicit initialization options must be used to initialize all . bss sections in the output
section.

■ ld will use the default fill value to initialize all . bss sections in the output section.

Consider the following ld i-file:

SECTIONS
{

secl:
{

fl. o (. text)

. += Ox200;
f2. o (. text)

} = OxDFFF
sec2:
{

fl.o (.bss)

f2.o (.bss)

} = Ox1234
sec3:
{

J3. o (.bss)

} = OxFFFF
sec4: {j4.o (.bss)}

Chapter 6 The ld loader 7-21
nnn-nnnn

In the example above, the 0x200 byte hole in section secl is filled with the value OxDFFF. In
section sec 2, f 1 . o (. b s s) is initialized to the default fill value of ox o o, and f 2. o (. b s s) is
initialized to Ox1234. All . bss sections within sec3 as well as all holes are initialized to
Ox FFFF. Section sec4 is not initialized; that is, no data are written to the object file for this
section.

Notes and special considerations

The following sections are collections of additional information you may find helpful in
understanding the loader.

Using archive libraries

Each member of an archive library (for example, libc . a) is a complete object file , typically
consisting of the standard three sections:

■ . text

■ .data

■ .bss

Shared library archives contain one or two (optional) additional sections:.

■ . init

■ .lib

In addition to these sections, files calling on shared library executable files contain dummy
sections corresponding to sections of the shared object. For further information, see Chapter
7, "Shared Llbrari-:s," in AIUX Programming Languages and Tools, Volume 1.

Archive libraries are created through the use of the A/ill(system ar command on object files
generated by running cc or as. Shared libraries are created using the m.kshlib command.
An archive library is always processed using selective inclusion: only those members that
resolve existing undefined-symbol references are taken from the library for loading.

Llbraries can be placed both inside and outside section definitions. In both cases, a member
of a library is included for loading whenever the following conditions exist:

■ A reference to a symbol is defined in that member.

■ The reference is found by ld prior to the actual scanning of the library.

7-22 A/ill(Development Tools
nnn-nnM

When a library member is included by searching the library inside a SECTIONS directive, all
input sections from the member are included in the output section being defined.

When a library member is included by searching the library outside a SECTIONS directive, all
input sections from the member are included in the output section with the same name. That
is, the . text section of the member goes into the output section named . text, the . data

section of the member into . data, the . bss section of the member into . bss, and so on. If
necessary, new output sections are defined to provide a place to put the input sections. Note,
however, that

■ Specific members of a library may not be referenced explicitly in an i-file.

■ The default rules for the placement of members and sections may not be overridden when
they apply to archive library members.

The -1 option is a shorthand notation for specifying an input file coming from a predefined
set of directories and having a predefined name. By convention, such files are archive
libraries. They do not, however, have to be. Furthermore, you can specify archive libraries
without using the -1 option simply by giving the full or relative A/UX system pathname.

♦ Note: The ordering of archive libraries is important, because a member extracted from the
library must satisfy a reference that is known to be unresolved at the time the library is
searched.

You can specify archive libraries more than once. They are searched every time they are
encountered. Archive files have a symbol table at the beginning of the archive. ld will cycle
through this symbol table until it has determined that it cannot resolve any more references
from that library.

Because it runs on the Macintosh II, ld uses a random-access library. All machines running a
pre-System V UNIX system use an old format library that must be searched linearly.

The loader will make one search through a library in the old format, but will continue to
search through a library in the new format until it has determined that it can resolve no more
references from that library. Because of the different searching algorithms used, programs that
are ported from pre-System V UNIX machines can include files from libraries in a different
order.

Be careful when using archive libraries in a subsystem loading environment. If a member of
an archive (an object file) is to be included in a subsystem final load file, there must be a
reference within the subsystem being loaded to a symbol defined in that object file. You can
use the -u option to create unresolved references that force the loading of archive members.
Consider the following example:

■ The input files fl/el. o and file2. o each contain a reference to the external function FCN.

Chapter 6 The ld loader 7-23
nnn-nnnn

■ Input.fi/eJ. o contains a reference to symbol ABC.

■ Input.fi/e2. o contains a reference to symbol XYZ .

■ Library liba. a , member 0, contains a definition of XYZ.

■ Library libe. a, member 0, contains a definition of ABC.

■ Both libraries have a member 1 that defines FCN.

Depending on the order in which files and libraries appear on the command line, different
library members can be included for loading. If the ld command is entered as

ld .fi/el.o -la fi/e2.o -le

the FCN references are satisfied by liba. a, member 1; ABC is obtained from libe. a ,

member 0; and XYZ remains undefined (because the library liba. a is searched before
file2. o is specified). If the ld command is entered as

ld ft/el. o .fi/e2. o -la -le

the FCN references are satisfied by liba. a, member 1; ABC is obtained from libc. a,

member 0; and XYZ is obtained from liba. a , member 0. If the ld command is entered as

ld fi/el.o .fi/e2.o -le -la

the FCN references are satisfied by libe. a, member 1; ABC is obtained from libe. a,

member 0; and XYZ is obtained from liba . a, member 0.

You can use the -u option to force the loading of library members when the loading run does
not contain an actual external reference to the members. For example,

ld -u routl -la

creates an undefined symbol called routl in the ld global symbol table. If any member of
library liba. a defines this symbol, it, and perhaps other members as well, is extracted.
Without the -u option, there would have been no trigger to cause ld to search the archive
library.

Dealing with holes in physical memory

When memory configurations are defined such that unconfigured areas exist in vinual
memory, each application or user has the responsibility of fonning output sections that will fit
into meroory. For example, assume that meroory is configured as follows:

7-24 A/UX Development Tools
nnn-nnM

MEMORY
{

meml: 0 = OxOOOOO l Ox02000
mem2: 0 = Ox40000 l OxOSOOO

mem3: 0 = Ox20000 l OxlOOOO

Let the files/1. o,/2. o, ... fn. o each contain the standard three sections . text, . data, and
. bss, and let the combined . text section be Ox:12000 bytes. There is no configured area of
memory into which this section may be placed. Appropriate directives must be supplied to
break up the . text output section so ld can do allocation. For example,

SECTIONS
{

txtl:
{

/1.o (.text)

/2.o (. text)

f3.o (. text)

}

txt2:

/4.o (. text)

/5.o (. text)

/6.o (.text)

Allocation algorithm

An output section is formed either as a result of a SECTIONS directive or by combining input
sections of the same name. An output section can be made up of O or more input sections.
After an output section's composition is determined, it must be allocated into configured
virtual memory. ld uses an algorithm that attempts to minimize fragmentation of memory,
which increases the possibility that a loading run will be able to allocate all output sections
within the specified virtual memory configuration. The algorithm proceeds as follows:

1. Allocate any output sections for which explicit bonding addresses are specified.

2. Allocate any output sections to be included in a specified memory area. In both this and
the succeeding step, each output section is placed into the first available space within the
(named) memory area, taking into consideration any alignment.

3. Allocate output sections that are not handled by steps 1 or 2.

Chapter 6 The ld loader 7-25
nnn-nnnn

If all memory is contiguous and configured (the default), and no SECTIONS directives are
given, output sections are allocated in the order they appear to ld, normally . text , . data,

. bs s. Otherwise, output sections are allocated, in the order they were defined or made
known to ld, into the first available space they fit.

Incremental loading

As previously mentioned, the output of ld can be used as an input file to subsequent ld

runs, provided that the relocation information is retained (using the -r option). With large
applications you may find it desirable to partition C programs into subsystems, load each
subsystem independently, and then load the entire application. For example,

Step 1:
ld -r -o outfilel i-filel

/* i-filel */
SECTIONS
{

}

Step 2:

ssl:

fl.a
f2.o

fn.o

ld -r -o outfile2 i-file2

/* i-file2 */
SECTIONS
{

}

Step 3:

ss2:

gl.o
g2.o

gn.o

ld -a -m -o final.out outfilel outfile2

7-26 A/UX Development Tools
nnn-nnM

By judiciously fanning subsystems, applications can achieve a form of incremental loading,
whereby it is necessary to reload only a portion of the total load when a few programs are
recompiled.

To apply this technique, follow two simple rules:

1. Intermediate loads must contain only SECTIONS declarations and be concerned only
with the formation of output sections from input files and input sections. You should not
do any binding of output sections in these runs.

2. All allocation and memory directives, as well as any assignment statements, must be
included in the final ld call only.

DSECT, COPY, and NOLOAD sections

You can give sections a type in a section definition, as shown in the following example:

The DSECT option creates a dummy section, which has the following properties:

1. It does not participate in the memory allocation for output sections. As a result, it takes up
no memory and does not show up in the memory map (the -m option) generated by ld.

2. It can overlay other output sections and even unconfigured meroory. dummy sections may
overlay other dummy sections.

3. The global symbols defined within the dummy section are relocated normally. That is,
they appear in the output file's symbol table with the same value they would have had if
the dummy section were actually loaded at its virtual address. Other input sections may
reference DSECT-defined symbols. Undefined external symbols found within a dummy
section cause specified archive libraries to be searched; any members that define such
symbols are loaded normally (not in the dummy section or as a dummy section).

4. None of the section contents, relocation information, or line number information
associated with the section is written to the output file.

A copy section is created by the COPY option. The only difference between a copy section
and a dummy section is that the contents of a copy section and all associated information are
written to the output file.

A noload section is allocated virtual space, appears in the memory map, and so forth. A
section of the type N0L0AD differs in only one respect from a normal output section: text and
data are not written to the output file.

Chapter 6 The ld loader 7-27
nnn-nnnn

As an example:

SECTIONS
{

namel 0x200000 (DSECT)
name2 0x400000 (COPY)
name3 0x600000 (NOLOAD)

{ft/el. o l
{fi/e2. 0)

{fiie3. 0)

Here, none of the sections fromfilel. o are allocated, but all symbols are relocated as though
the sections were loaded at the specified address. Other sections could refer to any of the
global symbols and are resolved correctly.

Output file blocking

You can use two options to affect the physical file offsets of the information written to the
output file by ld:

■ The BLOCK option permits any output section to be aligned in the output field at a
specified
n-byte boundary.

■ The -B option causes padding sections to be generated in the output file.

Both features are provided explicitly for the use of ldp, which constructs pfiles for DMERT.
The output sections of a pfile have certain requirements in terms of physical file offsets. These
requirements can be met using BLOCK and -B.

You can apply the BLOCK option to any output section or GROUP directive. It directs ld to
align a section at a specified byte offset in the output file. It has no effect on the address at
which the section is allocated nor on any part of the loading process. It is used purely to
adjust the physical position of the section in the output file.

SECTIONS
{

.text BLOCK(0x200) :{)

.data ALIGN(0x20000)BLOCK(0x200) :{

In this SECTIONS directive example, ld assures that each section, . text and . data, is
physically written at a file offset that is a multiple of Ox200 (for example, at an offset of 0,
Ox200, Ox400, ... , and so on, in the file).

7-28 A/UX Development Tools
nnn-nnnn

__ --....

Nonrelocatable input ftles

If you intend to use a file produced by ld in a subsequent ld run, you should set the -r
option for the first ld run. This preserves relocation information and permits the sections of
the file to be relocated by the subsequent ld run.

When ld detects an input file that does not have relocation or symbol table information, it
gives a warning message. Such information may be removed by ld (see the -s option in the
section "Options") or by the strip(l) program. Note, however, that the loading run
continues, using the nonrelocatable input file. For such a load to be successful (that is,
actually and correctly to load all input files, relocate all symbols, resolve unresolved
references, and so on), two conditions for the nonrelocatable input files must be met:

1. Each input file must have no unresolved external references.

2. Each input file must be bound to the same virtual address as it was in the ld run that
created it. ·

Note that if these two conditions are not met for all nonrelocatable input files , no error
messages are issued. Because of this restriction, you must take extreme care when supplying
such input files to ld.

The -i1d option

When the -ild option is used, the loader creates a pair of dummy sections of type DSECT

for each unallocated, configured area of memory. These dummy sections have unique names
in the form of . i _ l _ dnn, where nn is a 2-digit decimal integer in the range from 00 through
99. At mos~ 50 pairs of these sections will be created by the loader. These sections identify
the boundaries of the unused memory space and are similar to . bs s sections in that they do
not contain any text or initialized data. The loader also creates a dummy section named
. history. These sections are used later by the incremental loader.

Error messages

The following sections report the error messages you may receive from ld. The sections are
arranged by general topic.

Chapter 6 The ld loader 7-29
nnn-nnnn

---- -------·-· -·------ - - - --- ·- - - -··---------

Corrupt input mes

Certain error messages indicate that the input file is corrupt, nonexistent, or unreadable. If
you get any of them, you should check that the file is in the correct directory with the correct
permissions. If the object file is corrupt, try recompiling or reassembling it. These error
messages include

Can't open name

Can't read archive header from archive name

Can't read file header of archive name

Can't read 1st word of file name

Can't seek to the beginning of file name

Fail to read file header of name

Fail to read lnno of section sect of file name

Fail to read magic number of file name

Fail to read section headers of file name

Fail to read section headers of library name member number

Fail to read symbol table of file name

Fail to read symbol table when searching libraries

Fail to read the aux entry of file name

Fail to read the field to be relocated

Fail to seek to symbol ·table of file name

Fail to seek to symbol table when searching libraries

Fail to seek to the end of library name member number

Fail to skip aux entries when searching libraries

Fail to skip the mem of struct of name

Illegal relocation type

No reloc entry found for symbol

Reloc entries out of order in section sect of file name

Seek to name section sect failed

7-30 A/UX Development Tools
nnn-nnM

-

Seek to name section sect lnno failed

Seek to name section sect reloc entries failed

Seek to relocation entries for section sect in file name failed.

Errors during output

Certain errors occur because ld cannot write to the output file. This usually indicates that the
file system is out of space. Messages to this effect include

Cannot complete output file name. Write error.

Fail to copy the rest of section num of file name

Fail to copy the bytes that need no reloc of section num of

file

name I/0 error on output file name.

Internal errors

Certain messages indicate that something is wrong with ld internally. If you get them, there is
probably nothing you can do except to get help from another experienced user of ld. Such
messages include

Attempt to free nonallocated memory

Attempt to reinitialize the SDP aux space

Attempt to reinitialize the SDP slot space

Default allocation did not put .data and .bss

region

Failed to close SDP symbol space

Failure dumping an AIDFN.XXX data structure

Failure in closing SDP aux space

Failure to initialize the SDP aux space

Failure to initialize the SDP slot space

into the same

Chapter 6 The ld loader 7-31
nnn-nnnn

Internal error: audit_groups, address mismatch

Internal error: audit_group, finds a node failure

Internal error: fail to seek to the member of name

Internal error: in allocate lists, list confusion (numnum)

Internal error: invalid aux table id

Internal error: invalid symbol table id

Internal error: negative aux table ld

Internal error: negative symbol table id

Internal error: no symtab entry for DOT

Internal error: split_scns, size of sect exceeds its new

displacement.

Allocation errors

Certain error messages appear during the allocation phase of the load. They generally appear
if a section or group does not fit at-a certain address or if the given MEMORY or SECTION

directives conflict in some way. If you are using an i-file and get such messages, check that
MEMORY and SECTION directives allow enough room for the sections to ensure that nothing
overlaps and that nothing is being placed in unconfigured memory. For more information, see
the sections "The ld Command Language" and "Notes and Special Considerations." These
messages include

Bond address address for sect is not in configured memory

Bond address address for sect overlays previously allocated section

sect at address

Can't allocate output section sect, of size num

Can't allocate section sect into owner mem

Default allocation failed: name is too large

GROUP containing section sect is too big

Memory types name] and name2 overlap

Output section sect not allocated into a region

7-32 A/UX Development Tools
nnn-nnnn

sect at address overlays previously allocated section sect at address

sect, bonded at address, won't fit into configured memory

sect enters unconfigured memory at address

Section sect in file name is too big.

Misuse of loader directives

Certain error messages are explanations that occur following the misuse of an input directive.
If you get them, please review the appropriate section in this chapter. These messages, and
brief explanations of their causes, follow.

Adding name(sect) to multiple output sections.

The input section is mentioned twice in the SECTIONS directive.

Bad attribute value in MEMORY directive: C.

The attribute c is illegal. An attribute must be one of R, w, x, or r .

Bad flag value in SECTIONS directive, option.
Only the -1 option is allowed inside of a SECTIONS directive.

Bad fill value.
The fill value must be a 2-byte constant.

Bonding excludes alignment.
The section will be bound at the given address, regardless of the alignment
of that address.

Cannot align a section within a group

Cannot bond a section within a group

Cannot specify an owner for sections within a group
The entire group is treated as one unit, so the group may be aligned or
bound to an address, but the sections making up the group may not be
handled individually.

DSECT sect can't be given an owner

DSECT sect can't be linked to an attribute.

Because dummy sections do not participate in the memory allocation, it is
meaningless for a dummy section to be given an owner or an attribute.

Region commands not allowed
The A/UX loader does not accept the REGION commands.

Chapter 6 The ld loader 7-33
nnn-nnnn

Section sect not built.

The most likely cause of this is a syntax error in the SECTIONS directive.

Semicolon required after expression

Statement ignored.
This is caused by a syntax error in an expression.

Usage of unimplemented syntax.
The A/UX ld does not accept all possible commands.

Misuse of expressions

Certain errors arise from the misuse of an input expression. If you receive any of the
following messages, please review the appropriate section in this chapter.

Absolute symbol name being redefined.

An absolute symbol may not be redefined.

ALIGN illegal in this context.
Alignment of a symbol may be done only within a SECTIONS directive.

Attempt to decrement DOT

Illegal assignment of physical address to DOT.

Illegal operator in expression

Misuse of DOT symbol in assignment instruction.
You may not use the dot symbol (.) in assignment statements that are
outside of SECTIONS directives.

Symbol name is undefined.

All symbols referenced in an assignment statement must be defined.

Symbol name from file name being redefined.

A defined symbol may not be redefined in an assignment statement.

· Undefined symbol in expression.
All symbols used in expressions must be defined.

Misuse of options

Certain errors arise from the misuse of options. If you get any of the following messages,
please review the appropriate section of this book:

7-34 A/UX Development Tools
nnn-nnM

Both-rand -s flags are set.

-s flag turned off .
Further relocation requires a symbol table.

Can't find library libX.a

-L path too long (String)

-o file name too large (>128 char), truncated to (String)

Too many -L options, seven allowed.

Some options require white space before the argument, some do not; see the section
"Options." Including extra white space or not including the required white space is the most
likely cause of the following messages:

option flag does not specify a number

option is an invalid flag

-e flag does not specify a . legal symbol name: name

-f flag does not specify a two-byte number: num

No directory given with -L

-o flag does not specify a valid file name: string

-1 flag (specifying a default library) is not supported

-u flag does not specify a legal symbol name: name.

Space constraints

Certain error messages can occur if ld attempts to allocate more space than is available. If
you get them, you should attempt to decrease the amount of space used by ld. You can do
this by making the i-file less complicated or by using the - r option to create intermediate
files. These space constraint messages include

Fail to allocate num bytes for slotvec table

Internal error: aux table overflow

Internal error: symbol table overflow

Memory allocation failure on num-byte call

Chapter 6 The ld loader 7-35
nnn-nnnn

Memory allocation failure on realloc call

Run is too large and complex.

Miscellaneous errors

Errors occur for many reasons. If one occurs that has not been explained in a previous
section, refer to the error message for an indication of where to look in this reference.
Miscellaneous error messages include

Archive symbol table is empty in archive name, execute

'arts name' to restore archive symbol table.

On systems with a random-access archive capability, such as A/UX, the loader requires that all
archives have a symbol table. This symbol table may have been removed by strip.

Can't create intermediate ld file name
Can't open internal file name

These two messages are possible only when the loader uses two processes.
This would indicate that the temp directory (usually /tmp or /usr /tmp) is
out of space, or that the loader does not have permission to write in it.

Cannot create output file name.
You may not have write permission in the directory where the output file is
to be written.

File name is of unknown type, magic number = num·
Ifile nesting limit exceeded with file name.

i-files may be nested 16 deep.

Library name, member has no relocation information.

Multiply defined symbol sym, in name has more than one size

A multiply-defined symbol has not been defined in the same manner in all
files.

name(secV not found

An input section specified in a SECTIONS directive was not found in the
input file.

Section sect starts on an odd byte boundary!

This warning occurs only if you specifically bind a section at an odd
boundary.

Sections .text, .data or .bss not found;

7-36 A/UX Development Tools
nnn-nnM

Optional header may be useless.
The system a. out header uses values found in the . text, . data, and
. bss section headers.

Line nbr entry (numnum) found for nonrelocatable symbol:

Section sect, file name
This error is generally caused by an interaction of yacc(l) and cc(l). See
the section "Notes and Special Considerations.n

Undefined symbol sym first referenced in file name.
Unless you use the - r option, ld requires that all referenced symbols be
defined.

Unexpected EOF (End Of File).
There is a syntax error in the i-file.

Syntax diagram for input directives

Input to ld is a series of directives that together have the effect of combining various
reloctable input object files , binding all objects to known addresses, and resolving object
references so the resulting output object file is self-consistent and executable. Table 7-3
contains syntax diagrams for the input directives.

In Table 7-3, a particular notation is used. The terms on the left define the terms on the right.
For example, the expansion

term ➔ directivel
➔ directive2

means that term can be made up of directive I or directive2.

♦ Note: Number suffixes have been added to some metalanguage terms to illustrate
treatment of multiple arguments. You should ignore these suffixes when seeking the
definition of such terms.

Ellipses (. ..)indicate that several of the elements on the right can comprise a left-hand
element. For example, the expansion

term ➔ directive .. .

Chapter 6 The ld loader 7-37
nnn-nnnn

means that term is made up of one or more directive;. Brackets indicate optional directives,
and braces indicate that the contents must be included in the directive.

For flags, one or more blanks, tabs, or newlines can be substituted wherever there is a space
between a flag option and its argument

■ Table 7-3 Directive expansion

Directive ➔ Expanded directive

file ➔ cmd .. .

cmd ➔ memory
➔ sections
➔ assignment
➔ filename
➔ flags

memory ➔ MEMORY { memory-specl [[, J memory-spec2J .. .

memory-spec ➔ name [attributes] : origin-spec [, J length-spec

attributes ➔ ([R l [w l [X l [I l

origin-spec ➔ origin = long

length-spec ➔ length= long

origin ➔ ORIGIN

➔ o[rigin]
➔ . o[rg]

length ➔ LENGTH

➔ l[ength]

➔ l[en]

sections ➔ SECTIONS {sec-or-group ... J

sec-or-group ➔ section
➔ group
➔ library

7-38 A/UX Development Tools
nnn-nnnn

(Coruinued)

■ Table 7-3 Directive expansion (Continued)

Directive ➔ Expanded directive

section ➔ name sec-options: ! statement-list l [fi/n [mem-.spec]

sec-options

addr

align-option

align

block-option

block

type-option

➔ [addn [align-option] [block-option] [t;pe-option]

➔ long

➔ align (long>

➔ ALIGN

➔ align

➔ block (long>

➔ BLOCK

➔ block

➔ (DSECT)

➔ (NOLOAD)

➔ (COPY)

statement-list ➔ statement I [statement2l ...

statement ➔ filename [, name-list> l ffi/n library assignment

name-list ➔ namel [[,) name2 ...

fill ➔ = long

library ➔ -1 name

assignment ➔ /side assign-op expr end

/side ➔ name
➔

(Continued)

Chapter 6 The ld loader 7-39
nnn-nnnn

■ Table 7-3 Directive expansion (Continued)

Directive ➔ Expanded directive

assign-op ➔ =
➔ +=
➔

➔ *=
➔ /=

expr ➔ tenn
➔ expr binary-op expr ·

term ➔ long
➔ name
➔ align (tenn)

➔ (expn
➔ unary-op term

unary-op ➔

➔

binary-op ➔ *
➔ I
➔ %

➔ +
➔

➔ >>
➔ <<
➔

➔ !=
➔ >
➔ <
➔ <=
➔ >=
➔ &

➔

➔ &&

➔ 11

1These appear to be circular references, but in practice they are (eventually) resolved by definition to a defined
element.

7-40 A/UX Development Tools
nnn-nnnn

-·--------

(Continued)

■ Table 7-3 Directive expansion (Continued)

Directive

end

➔

➔

➔

group ➔

group-options ➔

section-list ➔

mem-spec ➔

➔

flags ➔

name
long
filename

pathname

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

Expanded directive

GROUP group_options: {section-list} [mem-.spec]

[addn [align-option]

sectionl [[,] section2l ...

> name
> attributes

-e name
-f long
-ild
-iname
-rn
-o filename
-r

-s

-t
-u name
-x

-z

-F
-Lpathname
-M

-N

-s
-v
-vs long

Any valid symbol name.
Any valid long integer constant.
Any valid A/UX operating system filename. This may include a full
or partial pathname.
Any valid A/UX operating system pathname (full or partial).

Chapter 6 The ld loader 7-41
nnn-nnnn

Glossary

*: C symbol denoting a pointer
type.

absolute value: (1) An expression
or identifier whose memory
location (and value) is known at
assembly time. Compare
relocatable value. (2) The positive
value of any number.

active window: The frontmost
window on the desktop.

address: A number that specifies a
location of an object in memory.

aggregate: A structure or array.

alert: A warning or report of an
error, in the form of an alert box,
sound from the Macintosh's
speaker, or both.

alert box: A box that appears on
the screen to give a warning or
report an error during a Macintosh
application.

alias: A different name for the
same entity.

A-line
instructions: Unimplemented
68000-family instructions, used by
the Macintosh to implement
Toolbox and Macintosh Operating
System calls.

allocate: To reserve an area of
memory for use.

anachronism: A language feature,
dating back to the early days of C,
that is no longer supported by most
C compilers. Anachronisms are
obsolete.

ANSI C: The C language as
described in the American National
Standard for Information Systems-­
Programming Language C,
document number X3.159-1989.

ANSI C standard: The finalized
standard on the C language as
defined by the American National
Standards Institute .

application: A program that can be
launched from the Macintosh
Finder. An application runs stand­
alone and has the file type •APPL• .

application heap: The portion of
the heap available to the running
application program and the
Toolbox.

application space: Memory that's
available for dynamic allocation by
applications.

array: A data structure containing
an ordered set of elements.

1

ASCII: Acronym for American
Standard Code for Information
Interchange, a system of assigning
code numbers to letters, numerals,
punctuation marks, and control
codes.

automatic variable: A dynamic
local variable that comes into
existence when a function is called
or a compound statement scope is
entered and that disappears when it
is exited.

big-endian processor: A processor
that puts the most significant byte
of a word first. So named after a
Lilliputian political dispute.

block: A group regarded as a unit;
usually refers to data or memory in
which data is stored.

block device: A device that reads
and writes blocks of bytes at a
time. It can read or write any
accessible block on demand.

buffer: A holding area in RAM where
information can be stored
temporarily.

button: A standard Macintosh
control that causes some
immediate or continuous action
when clicked or pressed with the
mouse. See also radio button.

C: (1) A programming language
originally designed by Dennis
Ritchie in 1972 and expanded by
the ANSI C standard.

C string: A sequence of characters
terminated by a null byte:

G-2 A/UX Development Tools

calling conventions: The
conventions under which a function
is called, parameters are passed to
it, and a resul~ if any, is returned.
A/UX C supports both C-style and
Pascal-style calling conventions.

carriage return (\r): A control
code generated by the RETURN key.

char: An 8-bit character data
type whose range is -128 to 127.

character device: A device that
reads or writes a stream of
characters, one at a time. It can
neither skip characters nor go back
to a previous character.

class specifier: A keyword, like
register, that specifies a type's
storage class.

cast: a construct causing an
expression value to convert to a
named data type.

dosed file: A file without an
access path. Closed files cannot be
read from or written to.

code resource: A resource that
contains a program's code-most
commonly a resource of type
'CODE' (for applications), but
other resource types such as
'DRVR' and • PDEF • also contain
code.

code segment: An individual
'CODE' resource, comprising part
of the code of a Macintosh
application. Segments are loaded
in and out of memory by the
segment loader.

command: In the Standard C
Library, a parameter that tells a
function which of several actions to
perform; in an A/UX shell, a
command name and parameters.

command file: A file consisting of
executable commands that can be
run from the shell. Also called a
script.

compiler option: A symbol placed
in the A/UX C command line to send
an instruction to the compiler.

control character: A nonprinting
character that controls or modifies
the way information is printed or
displayed.

__ DATE __ : A reserved
preprocessor symbol that
represents the current date at
compile time.

data buffer: Heap space
containing information to be
written to a file or device driver
from an application, or read from a
file or device driver to an
application.

data fork: The pan of a file that
contains data accessed via the File
Manager.

deprecated: Not recommended. A
feature is deprecated if it is
obsolescent-that is, it may work
on the current compiler, but will not
work on future compilers.

dereference: To refer to a block
by its master pointer instead of its
handle.

desktop: The screen as a surface
for doing work on the Macintosh.

device: A pan of the Macintosh,
or a piece of external equipment,
that can transfer information into
or out of the Macintosh.

device driver: A program that
controls the exchange of
information between an
application and a device.

diagnostic output: The file to
which A/UX tools, including the C
compiler, write error messages and
progress information. Diagnostic
output appears following the
commands being executed in the
active window by default, and can
be redirected to other files,
windows, and selections. In C,
diagnostic output is referenced
using stream stderr.

dialog: Same as dialog box.

dialog box: A box that a
Macintosh application displays to
request information it needs to
complete a command, or to report
that it's waiting for a process to
complete.

direct function: A function that
makes a direct trap call to the
Macintosh ROM.

directory: A subdivision of a
volume that can contain files as well
as other directories; equivalent to a
folder.

double: A 64-bit floating-point
data type-the IEEE double type.

Glossary G-3

ellipsis character: (1) The ANSI C
ellipsis character (...) is three
periods in the parameter list of a
function prototype. (2) The
Macintosh ellipsis character(. ..) is
produced by typing OPTI0N­
semicolon. The two are not
interchangeable.

end-of-file: See logical end-of-file
or physical end-of-file.

enum: An enumerated data type
of 8, 16, or 32 bits, depending on
the range of the enumerated literals.

environment: Consists of
exported variables and signal­
handling capabilities.

exception: An error or abnormal
condition detected by the
processor in the course of program
execution; includes interrupts,
traps, and floating-point
exceptions.

exit function: A function that is
registered with onexi t for
execution when the program
terminates.

expression: An expression is a
sequence of operators and
operands the specifies
computation of a value, or that
designates an object or a function,
or that generates side effects, or
that performs a combination of
these.

external reference: A reference to
a routine or variable defined in a
separate compilation or assembly.

G-4 A/UX Development Tools

FILE : A reserved
preprocessor symbol that
represents the current filename at
compile time.

file: A named, ordered sequence of
bytes; a principal means by which
data is stored and transmitted on
the Macintosh.

file buffered: A buffering style in
which characters sent to an output
I/O function are queued and
written as a block.

file control block: A fixed-length
data structure, contained in the
file-control-block buffer, where
information about an access path is
stored.

file descriptor: A file reference
number returned by a creator
open call.

file directory: The pan of a
volume that contains descriptions
and locations of all the files and
directories on the volume. There are
two types of file
directories: hierarchical file
directories and flat file directories.

File Manager: The pan of the
Macintosh Operating System that
supports file I/O.

file pointer: A pointer to the next
byte to be read or written in a
stream.

FILE variable: A variable
containing information about a
stream, including the file descriptor
and buffer size, location, and style.

- ------------

filename: A sequence of up to 31
printing characters (excluding
colons) that identifies a file. See
also pathname.

Finder: The application that
maintains the Macintosh desktop
and launches other programs. The
Finder is also the default startup
application.

fixed-point number: A signed 32-
bit quantity containing an integer
part in the high-order word and a
fractional part in the low-order
word.

float: A 32-bit floating-point
data type-the IEEE single type.

Floating-Point Arithmetic
Package: A Macintosh package
that supports extended-precision
arithmetic according to IEEE
Standard 754.

floating-point coprocessor
(MC68881): A coprocessor on the
Macintosh II that provides high­
speed support for extended­
precision arithmetic.

flush: To write out the contents of
a buffer.

font: A complete set of characters
of one typeface. A font may be
restricted to a particular size and
style, or may comprise multiple
sizes, or multiple sizes and styles.

fork: One of the two parts of a
file; see data fork and resource
fork.

free block: A memory block
containing space available for
allocation.

function: AC routine, which may or
may not return a value. Equivalent
to a Pascal function or a Pascal
procedure, respectively.

function prototype: A function
declaration containing an argument
list as specified by the ANSI
standard. Function prototypes, one
of the major features of ANSI C,
allow stronger type checking by the
compiler.

full pathname: A pathname
beginning from the root directory.
A full pathname is a pathname that
contains embedded colons but no
leading colon. Compare partial
pathname.

global variable: A variable that is
valid for all applications.

header file: A file whose contents
will be included with the source file
at compile time; it contains
function declarations, macros,
types, and #define directives
used by the compiler. Also called an
include file.

HFS: See hierarchical file
system.

hierarchical file system (HFS): A
system in which directories are used
to hold files , applications, and
other directories. HFS is used on
hard disks and on 800K (and larger)
floppy disks.

Glossary G-5

highlight: To display an object on
the screen in a visually distinctive
way, such as inverting it.

hybrid application: An
application taking advantage of
both the UNIX~ and Macintosh
features of A/UX. There are
generally two kinds: (1) UNIX
applications that make Macintosh
toolbox calls, and (2) Macintosh
applications that make A/UX
system calls.

icon: A 32-by-32-bit image that
graphically represents an object,
concept, or message.

include : A XXX.

identifier: The name of an object,
limited to 1024 characters.

index: A numeric value that
indicates the position of an
element in a sublist or array,
expressed by a subscript.

int: A 32-bit integer data type
whose range is -2,147,483,648 to
2,147,483,647. Identical to type
long in A/UX.

integral: One of the types char,
signed char, unsigned char,
short,unsigned short,int,
unsigned int,long,and
unsigned long.

G-6 A/UX Development Tools

Integrated Environment: A
library of functions that provide
low-level 1/0, access to font and
tab settings associated with text
files, and signal-handling
capabilities. In C, the routines are
part of the Standard C Llbrary.

interface: The compile-time and
run-time linkage between your C
program and Pascal routines such as
those documented in Inside
Macintosh.

1/0: Abbreviation for input and
output operations, taken
collectively.

K&R C: The original version of the
C language, as described in the first
edition of Kernighan and Ritchie's
7he C Programming Language.

label: A

LINE : A reserved
preprocessor symbol that
represents the current line number in
the current source file at compile
time .

line buffered: A buffering style in
which each line of output is saved
for writing as soon as a newline
character is written.

llttle-endian processor: A
processor that puts the least
significant byte of a word first. So
named after a Lllliputian political
dispute.

location counter: A

locked file: A file whose dara
cannot be changed.

logical block: Volume space
composed of 512 consecutive
bytes of standard information and
an additional number of bytes of
information specific to the disk
driver.

logical end-of-file: The position 1
byte past the last byte in a file;
equal to the actual number of bytes
in the file. Compare physical end­
of-file.

long: A 32-bit integer data type
whose range is -2,147,483,648 to
2,147,483,647. Identical to type
int inA/UX. ·

long double: In ANSI C a
' floating-point type that may, but

need no~ have more precision and
range than the double type. In
A/UX C (but not all ANSI Cs)

' '
long double is synonymous with
double.

Macintosh interfaces: A set of
interfaces that enable you to
access AIUX Toolbax routines (User
Interface Toolbox and Macintosh
Operating System) from A/UX C.

Macintosh Programmer's
Workshop (MPW): Apple's
software development environment
for the Macintosh family.

macro: Text that is replaced by
another string of text at compile
time.

main: The name of the function
that is the entry point for every C
program.

Main: The default segment name.

main segment: The segment
containing the main program.

manager: A set of data structures
and routines that perform related
Toolbox or Macintosh Operating
System functions. For instance, the
Window Manager handles the
display and manipulation of
windows on the Macintosh screen.

MC68020: The microprocessor in
the Macintosh II computer.

MC68030: The microprocessor in
the Macintosh Ilx computer and
later models. It supports the
MC68020 instruction set and
contains a subset of the Paged
Memory Management Unit.

MC68851: The Motorola 68851
Paged Memory Management Unit
(PMMU), an optional integrated
circuit that provides full memory
mapping in the Macintosh II,
including 24- to 32-bit address
mapping and virtual memory
support.

MC688881: The floating-point
coprocessor in the Macintosh II
computer.

MC688882: The floating-point
coprocessor in the Macintosh Ilx
computer. It supports the MC68881
instruction set.

memory block: An area of
contiguous memory within a heap
zone.

Glossary G-7

MPW: See Macintosh .
Programmer's Workshop.

newline (\n): A control code that
advances the print position or
cursor to the left margin of the next
output line.

newline character: Any character,
but usually carriage return (ASCII
code 13), that indicates the end of
a sequence of bytes.

newline mode: A mode of reading
data where the end of the data is
indicated by a newline character
(and not by a specific byte count).

normalized number: A floating­
point number that can be
represented with a leading
significand bit of 1.

object: An area of memory that can
be examined and stored into. It has
an identifier and an address.

object file: A file containing
specifications for data and code­
module contents, references to
other code and data modules, and
segmentation. Object files are
produced by the assembler and
compiler and are passed as input to
the linker.

obsolescent: A feature that may
now work, but will not work on
future compilers. Using an
obsolescent feature usually
produces a compiler warning.

G-8 A/UX Development Tools

obsolete: A feature that worked on
earlier compilers, but is not
supported on the current compiler.
Using an obsolete feature usually
produces a compiler error, but it
may silently produce erroneous
code.

open file: A file with an access
path. Open files can be read from
and written to.

Operating System: The lowest­
level software in the Macintosh. It
does basic tasks such· as I/0,
memory management, and interrupt
handling.

output driver: A device driver
that receives data via a serial port
and transfers it to an application.

package: A set of routines and
data types that is stored as a
resource and brought into memory
only when needed.

Paged Memory Management
Unit (PMMU): The Motorola
68851 Paged Memory Management
Unit, an optional integrated circuit
that provides full memory mapping
in the Macintosh II, including 24- to
32-bit address mapping and virtual
memory support.

parameter: An input to a routine.

parameter block: A data structure
used to transfer information
between applications and certain
Macintosh Operating System
routines.

partial pathname: A pathname
beginning from any directory other
than the root directory. A partial
pathname either contains no colons
or has a leading colon.

Pascal-style function: A
function, written in Pascal, C, or
assembly language, that is declared
in C using the pascal specifier.

Pascal string: A sequence of
characters that begins with a length
byte and has a maximum length of
255 characters. This format is used
by the Pascal compiler for variables
of type STRING, and is the default
form of string created by the
assembler.

pathname: A series of
concatenated directory names and
filenames that identifies a given file
or directory. See also partial
pathname and full pathname.

path reference number: A number
that uniquely identifies an
individual access path; assigned
when the access path is created.

physical end-of-file: The position
le byte past the last allocation
block of a file; equal to 1 more than
the maximum number of bytes the
file can contain. Compare logical
end-of-file.

physical size: The actual number
of bytes a memory block occupies
within its heap zone.

PMMU: The Motorola 68851 Paged
Memory Management Unit, an
optional integrated circuit that
provides full memory mapping in
the Macintosh II, including 24- to
32-bit address mapping and virtual
memory support.

pointer: The address of an object.
A pointer and an int are the same
size.

pragma: An implementation­
dependent compiler directive
introduced by the ANSI-C keyword
#pragma. By definition, pragrnas
are not portable.

preprocessor: Part of the C
compiler that provides file
inclusion and macro substitution.

predefined symbol (also called
preprocessor symbol): One of a
set of constants defined to be 1,
equivalent to writing "#define

symbol 1" at the beginning of the
source file.

read/write
permission: Information
associated with an access path that
indicates whether the file can be
read from, written to, both read
from and wrinen to, or whatever
the file's open permission allows.

register-based routine: A
Toolbox or Macintosh Operating
System routine that receives its
parameters and returns its results, if
any, in registers.

Glossary G-9

register variable: An automatic
variable that is allocated to a
register. The register specifier
tells the compiler to allocate a
register to a variable if possible.

regular expressions: A language
for specifying text patterns, using a
special set of metacharacters.

relocatable block: A block that
can be moved within the heap
during compaction.

relocatable value: an expression
or identifier whose value is relative
to the start of a particular segment.
The memory location represented
by such an expression cannot be
known at assembly time, but the
relative values of two such
expressions (that is, the difference
between them) can be known if
they refer to the same segment.
Compare absolute value.

resource file: Common usage for
the resource fork of a Macintosh
file .

resource fork: The part of a file
that contains data used by an
application, such as menus, fonts,
and icons. An executable file's code
is also stored in the resource fork.

result: An output from a routine.

root directory: The directory at
the base of a file catalog.

routine: The XXX.

scalar: A pointer or object of
arithmetic type.

G-10 A/UX Development Tools

script: Same as command file.

segment: One of several parts
into which the code of an
application can be divided. Not all
segments need to be in memory at
the same time. Segment names are
specified at compile time by means
of the - s compiler option or the
#pragma segment segment­
name preprocessor directive.

server: A node that manages
access to a peripheral device.

short: A 16-bit integer data
type whose range is -32,768 to
32,767.

side effect: Any operation that
accesses a volitile object, modifies
an object, modifies a file, or calls a
function that does any of these
operations.

signal: A software interrupt that
causes a program to be diverted
from its normal execution
sequence.

span-dependent
optimization: The XXX.

stack-based routine: A Toolbox
or Macintosh Operating System
routine that receives its parameters
and returns its results, if any, on the
stack.

Standard C Library: A library of
constants, data types, and
functions that support both
formatted and low-level I/O, string
manipulation, character
classification, memory allocation,
and mathematical functions. The
A/UX C Standard C library has all
the functions required by the ANSI
C standard, as well as some Apple
extensions.

standard error: Same as
diagnostic output.

standard input: The file from
which A/UX tools generally read
input if no filename parameters are
specified. Standard input is by
default the text entered while the
tool is executing, and can be
redirected to other files, windows,
and selections. In C, standard input
is referenced using stream stdin.

standard output: The file to
which many A/UX tools write their
output. Standard output appears
following the commands being
executed in the active window by
default, and can be redirected to
other files, windows, and
selections. In C, diagnostic output
is referenced using stream stdout.

str255: In A/UX C, an array of
type unsigned char.

stream: A file with associated
buffering.

struct: A record data type.

subdirectory: Any directory other
than the root directory.

system call: A request to execute
a named operating-system
function; also, the name of the
function itself.

system error ID: An ID number
that appears in a system error alert
to identify the error.

system space: A reserved memory
region that only processes
belonging to the root user can
access.

TIME : A reserved
preprocessor symbol that
represents the current time.

token: The minimal lexical element
used in a C compiler. The catagories
of tokens are keywords,
identifiers, constants, string
literals, operators, and puncuators.

tool: A program that runs under
A/UX.

Toolbox: Same as User Interface
Toolbox.

Transcendental Functions
Package: A Macintosh package
that contains trigonometric,
logarithmic, exponential, and
financial functions , as well as a
random number generator.

trap: An exception caused by
instruction execution. It arises
from process recognition of
abnormal conditions during
instruction execution or from use
of the specific instruction whose
normal behavior is to cause an
exception.

Glossary G-11

type: A kind of memory object
characterized by certain storage
properties.

type qualifier: A keyword that can
modify a type and give it certain
charicteristics, such as permanance
or impermanence.

1111buffered: A buffer style that
does not use a buffer for 1/0;
reading and writing is done one ·
character at a time.

undefined external: an identifier
whose value is defined external to
the containing object file.

unlock: To allow a relocatable
block to be moved during heap
compaction.

unmo1111ted volume: A volume
that hasn't been inserted into a disk
drive and had descriptive
information read from it, or a
volume that was previously
mounted and has since had the
memory used by it released.

unpurgeable block: A relocatable
block that can't be purged from the
heap.

unsigned char: An 8-bit
character data type whose range is
0 to 255.

unsigned int: A 3-2-bit
integer data type whose range is 0
to 4,294,967,295. Identical to
unsigned long.

G-12 A/UX Development Tools

unsigned long: A 32-bit
integer data type whose range is 0
to 4,294,967,295. Identical to
unsigned int.

unsigned short: A 16-bit
integer data type whose range is 0
to 65,535.

User Interface Toolbox: The
software in the Macintosh ROM
that helps you implement the
standard Macintosh user interface
in your application.

user space: A memory region in an
A/UX system to which a user
process has access.

void: A data type used to
declare functions that take no
parameters or return no value. The
void type can be used to cast
expressions where values are not
used. Pointers to void are also
allowed.

volume: A piece of storage
medium formatted to contain files;
usually a disk or pan of a disk. A
3.5-inch Macintosh disk is one
volume.

Index

%caar register 6-6
o/ocacr register 6-6
o/occr register 6-6
o/odfc register 6-6
o/odfcr register 6-6
o/ofp register 6-6
o/oisp register 6-6
o/omsp register 6-6
%pc register 6-6
%.sfc register 6-6
%.sfcr register 6-6
%.sp register 6-6
%.sr register 6-6
%usp register 6-6
%vbr register 6-6
abed instruction 6-26
absolute value6-10
add instruction 6-27
address mode formats 6-23
address mode syntax 6-20
address modes 6-22
addx instruction 6-27
alias command 4-10
align operation 6-16
alphabetic keyword reference 3-29
and instruction 6-27
array dimension 6-18
as syntax 6-3
as! instruction 6-27
asr instruction 6-27
assign command 4-8
attribute assignment 6-17
aux _sysm68K system call 2-17
aux_exit system call 2-11
auxaccept system call 10
auxaccess system call 2-10
auxbind system call 2-10
auxcerror system call 2-10
auxchdir system call 2-10
auxchmod system call 2-10

auxchown system call 2-10
auxchroot system call 2-10
auxclose system call 2-10
auxconnect system call 2-10
auxcreat system call 2-11
auxdtablesize system call 2-11
auxdup system call 2-11
auxexec system call 2-11
auxexecl system call 2-11
auxexecle system call 2-11
auxexeclp system call 2-11
auxexecv system call 2-11
auxexecve system call 2-11
auxexecvp system call 2-11
auxexit system call 2-11
auxfchmod system call 2-11
auxfchown system call 2-10
auxf cntl system call 2-11
auxfgets function 2-20
auxflock system call 2-11
auxfsmount system call 2-12
auxfstat system call 2-15
auxfstatfs system call 2-16
auxfsync system call 2-12
auxftruncate system call 2-16
auxgetcompat system call 2-12
auxgetdomain system call 2-12
auxgetegid system call 2-13
auxgetenv system call 2-12
auxgeteuid system call 2-13
auxgetgid system call 2-13
auxgetgroups system call 2-12
auxgelhostid system call 2-12
auxgethostnam system call 2-12
auxgetitimer system call 2-12
auxgetpeername system call 2-12
auxgetpid system call 2-12
auxgetppid system call 2-12
auxgetsockname· system call 2-13
auxgetsockopt system call 2-13
auxgettod system call 2-13

------ - ---- ----- --- ----- - - - -

auxgetuid system call 2-13
auxlink system call 2-13
auxlisten system call 2-13
auxlocking system call 2-13
auxlseek system call 2-13
auxlstat system call 2-15
auxmkdir system call 2-13
auxmknod system call 2-13
auxmsgsys system call 2-14
auxnfs_getfh system call 2-14
auxnfssvc system call 2-1 4
auxpipe system call 2-14
auxread system call 2-14
auxreadlink system call 2-14
auxreadv system call 2-14
auxrecv system call 2-14
auxrecvfrom system call 2-14
auxrecvmsg system call 2-14
auxrename system call 2-14
auxrmdir system call 2-15
auxselect system call 2-15
auxsemsys system call 2-15
auxsend system call 2-15
auxsendrnsg system call 2-15
auxsendto system call 2-15
auxsetsockopt system call 2-13
auxshmsys system call 2-15

· auxsigcall system call 2-15
auxsigcode system call 2-15
auxsignal system call 2-15
auxsigvec system call 2-15
auxsocket system call 2-15
auxsocketpair system call 2-15
auxstat system call 2-15
auxstatfs system call 2-16
auxstime system call 2-16
auxsymlink system call 2-16
auxsync system call 2-16
auxsyscall system call 2-16
auxsystem function 2-20
auxtime system call 2-16

1-1

auxtimes system call 2-16 cmdo command 3-31
-,

dirsandfiles keyword 3-22, 28, 29
auxtruncate system call 2-16 cmp instruction 6-28 disabled keyword 3-28, 29
auxumask system call 2-16 cmp2 instruction 6-28 divs.I instruction 6-29
auxumount system call 2-16 cmpa instruction 6-28 divs.w instruction 6-29
auxuname system call 2-17 cmpi instruction 6-28 divu instruction 6-29
auxunlink system call 2-17 cmpm instruction 6-28 dontquote keyword 3-19, 28, 29
auxunmount system call 2-17 column keyword 3-7, 28, 29 down command 4-8
auxustat system call 2-17 comm operation 6-15 dummy column 3-12
auxutime system call 2-17 command name 3-6, 9 dump command 4-8
auxuvar system call 2-17 command name keyword 3-28, 29 edit command 4-9
auxwait system call 2-17 Commando dialog boxes 3-3 effective address modes 6-22
auxwait3 system call 2-17 Commando keyword reference enables 3-26
auxwrite system call 2-17 alphabetic 3-29 enables keyword 3-28, 29
auxwritev system call 2-17 by function 3-28 enabling by name 3-26
auxfork_pipe function 2-18 Commando script language 5 enabling by prefix 3-26
bCC instruction 6-27 comments 3-7 endef operation 6-16
bchg instruction 6-27 comments 6-5 eor instruction 6-29
bclr instruction 6-27 compare operands 6-2 error redirection 3-23
bfchg instruction 6-27 compiling dialogs 3-32 errpopup keyword 3-23, 28, 29
bfclr instruction 6-27 condition codes 6-3 even operation 6-15
bfexts instruction 6-28 constants 6-7 exg instruction 6-29
bfextu instruction 6-28 cont command 4-6 expressions 6-11
bfffo instruction 6-28 control characters 3-19 ext instruction 6-29
bfins instruction 6-28 control dependencies 3-24 extb instruction 6-29
bfset instruction 6-28 control examples 3-1 S extw instruction 6-29
bftst instruction 6-28 cooperative multitasking 2-7 fabs instruction 6-38 --
bitfield 6-13 creating Commando dialogs 31 facos instruction 6-38
bkpt instruction 6-28 data initialization 6-12 fadd instruction 6-38
blocking 2-7 data operation 6-15 fasin instruction 6-38
box 3-17 dbCC instruction 6-29 fatan instruction 6-38
box keyword 3-28, 29 dbra instruction 6-29 fatanh instruction 6-38
boxes 3-28 dbx fbCC instruction 6-38
br instruction 6-28 execution commands 4-5 fcmp instruction 6-38
bra instruction 6-28 tracing commands 4-5 fcos instruction 6-38
bset instruction 6-28 dbx commands 4 fcosh instruction 6-38
bsr instruction 6-28 def operation 6-16 fdbCC instruction 6-38
btst instruction 6-28 default section alignment 7-16 fdiv instruction 6-38
byte operation 6-12 . default.Id 7-16 fetox instruction 6-38
call command 4-7 delete command 4-6 fetoxml instruction 6-38
calling dialogs 3-31 dialog aesthetics 3-34 fgetexp instruction 6-38
callm instruction 6-28 dialog box design 3-33 fgetfxfcn.xFCN 2-25
cas instruction 6-28 dialog box layout 3-5 fgetman instruction 6-38
cas2 instruction 6-28 dialog boxes 3-3 fgetsxfcnJ(FCN 2-23
case sensitivity 6-2 dialog bunon keyword 3-20 file command 4-9
character constants 6-8 dialog layout 3-33 file keyword 3-22, 28, 29
checkbox 15 dialog name keyword 3-23, 28, 29 file operation 6-16
chk instruction 6-28 dialog text 3-34 filelist keyword 3-22, 28, 29
chk2 instruction 6-28 dim operation 6-18 filesanddirs keyword 3-22, 28, 29
cleanupxfcn XFCN 2-27 directory keyword 3-22, 28, 29 fint instruction 6-38
cir instruction 6-28 dirlist keyword 3-22, 28, 29 fintrz instruction 6-38

.------.

1-2 A/UX Development Tools

floglO instruction 6-38
flog2 instruction 6-38
flogn instruction 6-39
flognpl instruction 6-39
fmod instruction 6-39
fmov instruction 6-39
fmovcr instruction 6-40
fmove instruction 6-39
fmovem instruction 6-40
fmul instruction 6-40
fneg instruction 6-40
fnop instruction 6-41
forkpipexfcnJ{FCN 2-22
frem instruction 6-41
frestore instruction 6-41
fsave instruction 6-41
fscale instruction 6-41
fsCC instruction 6-41
fsgldiv instruction 6-41
fsglmul instruction 6-41
fsin instruction 6-41
fsincos instruction 6-41
fsinh instruction 6-41
fsqrt instruction 6-41
fsub instruction 6-41
ftan instruction 6-42
ftanh instruction 6-42
ftCC instruction 6-42
ftemox instruction 6-42
ftest instruction 6-42
ftpCC instruction 6-42
ftrapCC instruction 6-42
ftst instruction 6-42
ftwotox instruction 6-42
func command 4-9
GetAUXErmo system call 2-17
global operation 6-15
header file pointers 2-7
help-3-6, 9
help command 4-13
help keyword 3-28, 29
help message length 3-6
help messages 3-35
holes 7-18
hybrid application 2-2
idemifiers 6-6
illegal instruction 6-30
init operation 6-16
Input/output system calls 8
installation 1-4

installation sizes 5
invoking dialogs 3-31
jmp instruction 6-30
jsr instruction 6-30
keyword

box 3-17, 28
column 3-7
command name 3-6, 9
dialog name 3-23
directory 3-22
dirlist 3-22
dirsandfiles 3-22
dontquote 3-19
enables 3-26
errpopup 3-23
ftle 3-22
filelist 3-22
filesanddirs 3-22
help 3-6, 9
lastl 3-27
name 3-17, 28
newfile 3-22
outpopup 3-23
prefix 3-9
required 3-23, 26
row 3-7
string 3-19
stringlist 3-19
text 3-20

label 6-10
lastl 3-27
last! keyword 3-29
!comm operation 6-15
Id syntax 7-2
length keyword 7-12
line operation 6-17
link instruction 6-30
list command 4-9
In operation 6-16
location counter 6-10
location counter operations 6-15
long operation 6-13
longeven operation 6-15
Isl instruction 6-30
lsr instruction 6-30
machine instructions 6-24
Macintosh dialog boxes 3-3
MC680xO instructions 6-26
memory attributes 7-11
MEMORY directives 7-11

mov instruction 6-39
move instruction 6-30
movem instruction 6-30
movep instruction 6-30
moves instruction 6-30
multitasking 2-7
mulu instruction 6-31
name 3-17
name keyword 3-28, 29
nbcd instruction 6-31
neg instruction 6-31
negx instruction 6-31
newftle keyword 3-22, 28, 29
next command 4-7
nop instruction 6-31
not instruction 6-31
number keyword 3-29
numeric constants 6-7
opcode overloading 6-3
operand order convention 6-2
optimization 6-19
option dependencies 3-24
option leniencies 3-28
option name 3-9
option name keyword 3-28, 29
option order 3-27
option type

checkbox 3-15
dialog button 3-20
radio buttons 3-16
text 3-20
text box 3-18

or instruction 6-31
org operation 6-15
ori instruction 6-31
origin keyword 7-12
outpopup keyword 3-23, 28, 29
output redirection 3-23
pack instruction 6-31
padding 7-15
pbCC instruction 6-44
pdbCC instruction 6-44
pea instruction 6-33
pflush instruction 6-31, 32, 44
pflusha instruction 6-32, 44
pflushr instruction 6-32, 44
pflushs instruction 6-32, 44
ploadr instruction 6-32, 44
ploadw instruction 6-32, 46
pmove instruction 6-32, 46

Index 1-3

preemptive multitasking 2-7
prefix keyword 3-9, 28, 29
prestore instruction 6-32, 46
print command 4-8
print memory 12
processor instructions 6-26
psave instruction 6-32, 46
psCC instruction 6-46
pseudo-operation 6-12
ptCC instruction 6-46
ptestr instruction 6-32, 46
ptestw instruction 6-32, 46
ptrap instruction 6-33
ptrapCC instruction 6-46
pvalid instruction 6-33, 46
quit command 4-13
radio buttons keyword 3-16, 28, 29
region directives 7-12
register identifiers 6-6
register suppression 6-23
relocatable value 6-11
required keyword 3-23, 26, 28, 29
rerun command 4-5
reserved names 7-9
reset instruction 6-33
return command 4-7
rol instruction 6-33
ror instruction 6-33
row keyword 3-7, 28, 29
roxl instruction 6-33
roxr instruction 6-33
rtd instruction 6-33
rte instruction 6-33
run instruction 6-33
rts instruction 6-33
run command 4-5
sbcd instruction 6-33
sec instruction 6-33
sci operation 6-17
script structure 3-8
section directives 7-13
section padding 7-15
SECTIONS directive 7-13
segments 6-9
set command 4-10
set operation 6-15
SetAUXErrno system call 2-18
sh command 4-13
short operation 6-12
size operation 6-17

1-4 A/UX Development Tools

source command 4-13
space operation 6-14
span-dependent optimization 6-19
stanmac 2-7
status command 4-6
stderr 3-23
stdout 3-23
step command 4-6
stop command 4-6
stop instruction 6-33
stopi command 4-12
storage class operation 6-17
string keyword 3-19, 28, 29
stringlist keyword 3-19, 28, 30
sub instruction 6-33
swap instruction 6-34
switch table operation 6-18
symbol attributes 6-16
symbol definition 6-14
tag operation 6-17
tas instruction 6-34
tCC instruction 6-34
tdivs.l instruction 6-29
td.ivu instruction 6-29
testing dialogs 3-32
text box keyword 3-18
text keyword 3-20, 29
text operation 6-15
tilde character 6-6
tmuls instruction 6-31
tmulu instruction 6-31
tpCC instruction 6-34
trace command 4-5
tracei command 4-12
trap instruction 6-34
trapCC instruction 6-34
trapv instruction 6-34
tst instruction 6-34
type operation 6-17
types 6-10
unalias command 4-11
undefined external6-11
unlk instruction 6-34
unpk instruction 6-34
unset command 4-11
up command 4-8
use command 4-9
using Id 7-2
utilitysystem calls 9
val operation 6-17

whatis command 4-8
where command 4-8
whereis command 4-8
which command 4-8
writexfcn XFCN 2-26
writing dialogs 3-32
XCMD4
XFCN 4

This Apple manual was written, edited, and
composed on a desktop publishing system using
Apple Macintosh® computers and Microsoft Word
software. Final pages were created on Apple
LaserWriter® printers. line art was created using
Adobe illustrator. PostScript®, the page-description
language for the LaserWriter, was developed by
Adobe Systems Incorporated.

Text type and display type are Apple's corporate
font, a condensed version of ITC Garamond®.
Bullets are ITC Zapf Dingbats®. Some elements,
such as program listings, are set in Apple Courier.

Writer: Tom Berry
Developmental Editor: Lorraine Aochi
Illustrator: Barbara Smyth
Production Supervisor: Tess Lujan

Special thanks ...
Additional thanks ...

TI-IE APPLE PUBUSHING SYSTEM

	CoverMaterial.pdf
	1-ToC-AUXDevTools.pdf
	img009.pdf

	AUXDevelopmentTools-1991.pdf
	01-AUXProgrammingEnvironment
	02-AUXHybridApplications
	03-AUXCommando
	04-AUXdbxReference
	05-AUXc89CommandSyntax
	06-AUXasReference
	07-AUXTheldLoader
	08-AUXGlossaryIndex

