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he TMS34010 is a high-performance 32-bit microprocessor with 
special instructions and hardware for handling the bit-field data and 
address manipulations often associated with computer graphics. 

With integrated control and addressing for dynamic random access 
memory (DRAM), it supports a lower system cost than would normally be 
associated with a 32-bit microprocessor. Internal features such as an in- 
struction cache, thirty-one 32-bit registers, and an independent memory 
control unit maintain a high degree of parallelism while efficiently utilizing 
lower cost DRAM. 

Embedded processing for graphics was the target application for the 
34010 from its inception. This led to a set of cost and performance decisions 
that are applicable to a wide variety of systems in addition to graphics systems. 

The chip contains over 180,000 transistors fabricated in 1.8-pm CMOS, 
consuming approximately one-half watt while executing in excess of six 
million instructions per second. In addition to a full 32-bit microprocessor 
core, the 34010 contains on-chip video random access memory (VRAM) 
display support, DRAM control, and a host interface. 

History 
Embedded microprocessors grew out of the need in the late 1960’s for 

more advanced calculators. 1 Calculator designers recognized that as the 
variety and complexity of applications for calculators grew, programmable 
rather than fixed-function processors would be advantageous. Further- 
more, engineers at Texas Instruments and Intel both recognized that these 
processors, once designed, could be used for much more than just 
calculators. The same chips could be used as general-purpose controllers, 
replacing gears, tubes, and relays with solid-state control. Texas In- 
struments initially pursued the single-chip microcomputer with its 
TMSlOOO line, while Intel focused on the multichip microprocessor market 
with the 4004 and then the 8008. 

Similarly, in the late 1970’s and early 1980’s designers began studying 
the processing needs of more advanced applications (such as digital signal 
processing, local area networks, and graphics). The comprehensive 
nature of these applications led designers at our company to the conclu- 
sion that even application-specific processors should be generally pro- 
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Photomicrograph of the TMS34010 embedded microprocessor. 

grammable. The design decision to support a com- 
pletely general-purpose instruction set on an applica- 
tion-specific device means that the device will be well 
suited for many new application areas as well. 

In display graphics, for example, the demands on 
graphics subsystems are growing rapidly. As desktop 
systems advance, a wide range of both graphic and 
nongraphic functions are being required of the 
graphics subsystem. The advent of graphical user inter- 
faces for bitmapped graphics systems and the growing 
complexity of the interfaces between the system pro- 
cessor and its graphics subsystem dictate that the 
embedded graphics device should be programmable. 

With advancements in processor technology, em- 
bedded control has expanded considerably. As many 
applications needed and could afford more processing 
power, &bit and, later, 16-bit CPUs came into use for 
embedded control applications. Today, many embed- 
ded applications are migrating to 32-bit microproces- 
sors for their speed and advanced feature sets. 

A 32-bit microprocessor offers significant advan- 
tages over older 8-bit and 16-bit chips, both in speed 
and ease of use. It has a large linear address reach for 
larger program and data requirements. The linear ap- 
proach simplifies address management and tool re- 
quirements, and the larger address reach extends the 
application limits of the device. Additionally, 32-bit 
processors generally have much better bit-field pro- 
cessing capabilities than the older processors. Many 
32-bit machines have internal instruction and/or data 
caches for faster program execution. 

With the growing size and complexity of applica- 
tions, the need for high-level-language (HLL) support 
has increased. However, for speed-critical portions of 
an application, the need for strong assembly language 
support for embedded control systems still exists. 
Thus, a processor that can be programmed easily at 
both levels is beneficial. 

Embedded processors 
The term embeddedprocessor covers a wide range of 

processors and their applications. The term embedded 
implies that the user is not aware of the presence of the 
processor. That is, the user does not directly interact 
with or program the processor, but rather the pro- 
cessor provides a convenient method of implementing 
the control function. Microwave controllers, electronic 
games, and computer peripherals are typical examples 
of systems using embedded processors. With the falling 
cost and increasing power of microprocessor systems, 
the range and capabilities of embedded processors are 
expanding. 

As 32-bit devices with their improved software sup- 
port and speed move into the embedded control arena, 
it is natural to see them applied to the same applica- 
tions currently supported by 8- and 16-bit devices. This 
trend tends to “raise the intelligence” of control sys- 
tems while maintaining their embedded nature. 

The evolution of printer systems clearly shows how 
the nature of embedded processors can change. The 
simple impact-head printers were implemented with 
&bit microcomputers as embedded processors. Today, 
high-resolution laser printers are emulating the impact 
printers they replaced and are providing the added ca- 
pability of interpreting high-level page description lan- 
guages. Consequently, the processing system of the 
laser printer is often more powerful than the host sys- 
tem it is connected to. Although the printer and its 
software interface have become more advanced, the 
processor is still being used in an embedded fashion. 

In general, embedded systems are more cost sensitive 
than host systems, and large-volume embedded-system 
applications require relatively few chips. In embedded 
applications the processing is more a means to an end 
than an end in itself as in host applications. The 
embedded-system designer’s goal is to provide the level 
of processing power necessary for the application with 
the highest system reliability at the lowest cost. 

Applying host processors to embedded-processor 
systems. Most 32-bit microprocessor design to date has 
focused on host systems. These designs assume large 
systems such as multitiered memory systems with vir- 
tual demand paging memory management. Most of the 
new RISC (reduced instruction set computer) machines 
also require specialized memory systems such as fast 
memory subsystems (in some cases special external 
caches), very wide buses, and sometimes multiple 
buses. Another important factor is the bus speeds that 
many of these new processors require; these speeds are 
beyond most available application-specific ICs 
(ASICs) and can mean requiring very fast external 
logic with relatively low levels of integration. 

These features are desirable for larger host applica- 
tions, but for most embedded applications they are 
either unnecessary or too expensive. The new pro- 
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cessors, for example, typically require ceramic pack- 
ages of 100 pins or more, resulting in higher compo- 
nent and system costs. 

Thus, a large practical gap in system complexity and 
cost lies between most 32-bit microprocessors and their 
16- and 8-bit predecessors. The needs of embedded 
controller applications for faster and easier-to-use mi- 
croprocessors without the unnecessary impediments 
associated with host systems are not being addressed by 
most 32-bit processors. 

Figure 1 diagrams the trade-offs in the current mi- 
croprocessor market. On one axis is the relative system 
cost of the processor and its intended memory system, 
and on the other axis is relative performance. The gen- 
eral-purpose 32-bit microprocessors lie in the high-per- 
formance and high-system-cost region of the graph. 
The processors alone for these systems cost over $300 
and require fast memory in the form of external static 
RAM (SRAM) caches to achieve optimum perfor- 
mance. The RISC chips on today’s commercial market 
likewise have been designed for high-performance and 
high-cost systems. At the lower cost and lower perfor- 
mance end are the 8-bit and 16-bit microprocessors and 
microcomputers. In the case of microcomputers the 
memory is built into the processor chip. The 8- and 
16-bit microprocessors typically have SRAM interfaces 
and require external logic to connect to lower cost 
DRAM. Consequently, high-cost SRAM has been used 
for lower chip count memory systems. 

The 34010 is positioned between the two extremes in 
the cost-performance trade-off. It offers substantially 
more performance than the 16-bit microprocessors and 
lower system cost than the 32-bit general-purpose pro- 
cessors. The two positions of the 34010 on the graph in 
Figure 1 depict its relative performance in general- 
purpose processing and its advantage in graphics due 
to its special graphics processing hardware. 

Application microprocessors. An application micro- 
processor is a general-purpose microprocessor designed 
with special hardware and instruction support for a 
specific system application. These microprocessors 
provide significant performance and cost advantages 
for applications needing their special capabilities. Ap- 
plication microprocessors grew out of the recognition 
that certain functions occur more frequently in embed- 
ded applications than in general-purpose processing. 

The TMS320 digital signal processor (DSP) is a good 
example of an application processor family aimed at a 
specific application area. Designed for DSP applica- 
tions, it  optimizes the performance of high-speed mul- 
tiplication operations typical in these applications. 
Many other applications have made use of the unique 
capabilities of DSP chips, including such varied ap- 
plications as voice recognition, adaptive suspension, 
and image compression for graphics. 

The TMS340 graphics system processor (GSP) fami- 
ly, of which the 34010 is the first processor, is aimed at 
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Figure 1. Embedded controller system trade-offs. 

the bit-field processing and large memory spaces 
associated with graphics rendering. Its large address 
reach, bit-field processing capability, on-chip timers, 
and DRAM interface make the processor well suited to 
many embedded-processing applications. 

Focus on embedded processing. Because it was in- 
tended to be an embedded processor or second pro- 
cessor in many systems, the 34010 has a set of features 
focused on reducing system complexity. It assumes a 
small system model with a single external memory 
hierarchy. The silicon budget was put into such 
features as DRAM control, timers, bit-field process- 
ing, pixel processing, and simple connection to a host 
processor or communication channel. 

Figure 2 shows the distribution of the processor’s 68 
pins. Table 1 lists the functions of these pins. Note the 
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Figure 2. TMS34010 pin diagram. 
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Table 1. TMS34010 pin description. 

Name Pin I I/O I Description I 
Host Interface Bus Pins 

m I 66 I I I Host chip select 
~~~~~ 

HDO-HD15 
HFS0,HFSl 
m 
rn 

44-5153-60 I/O Host bidirectional data bus 

42 0 Host interrupt request 
63 I I  Host lower data select 

67.68 I Host function select 

~- I 

mJ6s I 62 1 I I Host upper data select 
HRDY 
FImm 
HWRlfE 

43 0 Host ready 
64 I Host read strobe 
65 I Host write strobe 

BAS I 38 I 0 I Local row-address strobe I m 
DDOUT 
m 
LADO-LAD15 
m 
LCLK1 .LCLK2 

39 0 Local column-address strobe 
36 0 Local data direction out 
37 0 Local data enable 

10-1 7.1 9-26 I/O Local address/data bus 
34 0 Local address latched 

28.29 0 Local output clocks 
m 1 , m s  I 6,7 I I I Local interrupt request pins 1 
LRDY 

m m  
W 
INCLK 

9 I Local ready 
41 0 Local shift-register transfer or output enable 
40 0 Local write strobe 
5 I Input clock 

~ 

tFFarra I a I I 1 Hold request 1 
RUN/EIXU 2 
m/m 33 

I I Run/Emulate 
0 I Hold acknowledge or emulate acknowledge 

~ 

~ VideoTiming Signals 
mm I 32 I 0 I Blankina 

1 - 
rn 30 1/0 Horizontal sync 
VCLK 4 I Video clock 
m 31 I /O Vertical sync 

msET 3 I Device reset 
Miscellaneous 

, vcc 27,61 I Nominal 5-volt power supply 
. vss 1,18,35,52 I Ground 

emphasis both on adequate local bus control and on a 
host interface for attached processing. More than one 
third of the pins on the device are dedicated to this 
embedded function support. Almost half the pins sup- 

port the local addressldata bus designed to make 
DRAM interfacing straightforward. The device per- 
forms the row/column address multiplexing necessary 
to interface efficiently to DRAM. 
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Overview of the internal architecture 
As shown in Figure 3, the internal architecture of the 

TMS34010 consists of six major blocks: main CPU, in- 
struction cache, memory controller, host interface, 
display controller, and internal clocks.2-4 

Main CPU. The CPU is controlled by an 808 
microstate control ROM (CROM). It can execute sim- 
ple instructions in a single cycle when in cache, and it 
can perform complex microsequences such as the pixel 
block transfer instructions (PIXBLTs). Each CROM 
word has 166 bits, which support highly parallel opera- 
tions within the CPU. 

The main internal data paths are 32 bits wide and 
contain the key elements for efficient execution of both 
graphics and general-purpose instructions. The thirty- 
one 32-bit registers are organized as two register files, 
each with 15 registers sharing a common stack pointer 
register. The ALU, adder/subtracter, and barrel 
shifter have separate inputs and control and can all 
operate in parallel. 

Instruction cache. The instruction cache, trans- 
parent to the programmer, was designed to support 
fast execution while using D.RAM for the system 
memory. During the execution of time-critical loops, 
the cache helps in two ways: It supports fast instruction 
fetches, and it frees the memory bus for reading and 
writing. The programming model is a single memory 
space for instructions and data, and the cache is used to 
separate them for parallel access. 

The 256-byte cache uses a four-way set associative 
with four segments (sets), eight subsegments per seg- 
ment, and four words per subsegment. Each subseg- 
ment has a “present” bit, and direct replacement of 
“misses” within a subsegment is made for the four 
words. The four segments use a four-location CAM 
(content-addressable memory) to determine whether a 
segment is present and a four-location LRU (least 
recently used) stack to determine which segment is 
replaced on a miss. 

Memory controller. The memory controller is ac- 
tually a separate microcoded processor with its own 
control ROM that coordinates all accesses to local 
memory. CPU, host, and video requests are prioritized 
and scheduled by the memory controller along with 
DRAM refresh cycles. The memory controller is re- 
sponsible for generating the control signals for the 
local memory bus. 

All the necessary DRAM and VRAM control signals 
are generated by the memory controller. The row and 
column addresses along with data are triple-multi- 
plexed on the 16-bit local addreddata  (LAD) bus 
under control of the memory controller. Only one ex- 
ternal buffer/latch is required to connect the processor 
to DRAM. 

\\\\\\\\\\\\\\ 
256 Byte Instruction Cache 

N 32-Bit Adder N 
N Proaram Counter N 
1 ‘  ., L 1  

m Interface 

Graphics 

Figure 3. TMS34010 internal architecture. 

Figure 4 shows the local bus timing. The signals 
LCLKl and LCLK2 are the local bus clocks - generated 
by the processor for timing on the bus. The RAS (row 
address strobe) and CAS (column address strobe) 
signals directly generate the timing required by 
DRAM. The LAL (local address latch) signal, which 
falls after the column address is valid, is used to latch 
the column address. For static memory in te r fac inme 
RAS signal latches the upper addressbits, and the LAL 
signal latches the lower address bits. W (write enable) is 
d e s i g g t o  give the proper write signal for DRAM. 
The DEN (data enable) and DDOUT (data direction 
out) signals enable and control the direction of bus 
transceivers if necessary in the system. LRDY (local 
ready) is a processor input used to lengthen memory 
cycles for slower memories and peripherals. 

The m/@? (shift register transfer/output enable) 
signal, controlling a corresponding input on the 
VRAM, serves two dissimilar functions. It initiates the 
shift register transfer cycle on the VRAM, and it is 
timed to control the output enables on the VRAM and 
the 4-bit-wide DRAM devices. 

The mixing of the dissimilar functions of the 
VRAM’s shift register transfer signal and its output 
enable on TR/W (alternatively named TR/G) came 
about because the 34010 was defined in conjunction 
with the original VRAM, the TMS4161.5 The purpose 
of the output enable function was to make it un- 
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necessary to add extra buffers be- 
tween the VRAM and the 34010, 
but there were no pinsleft on the 
first VRAM. The  TR signal 
already existed, so the designers 
decided to  time-multiplex the 
signal. This invention of necessity 
has  become s tandard  on all 
VRAMs designed since. 

The memory controller also 
plays an important role in off- 
loading the main CPU from the 
burden of bit-field processing. On 
bit-field operations (including any 
move instructions), the CPU sim- 
ply passes the starting bit address, 
the field size, and the data to the 
memory controller; then the CPU 
is free to execute the next instruc- 
tion out of cache. Before sending 
the data, the CPU uses its barrel 
shifter to get the data in the proper 
bit alignment, but the memory 
controller actually performs the 
masking and merging operations 
to insert the field. On the basis of 
field size and address alignment, it 
computes and schedules as many 
read and write cycles as necessary, 
requiring no further interaction 
with the main CPU. 

Host interface. Unlike other mi- 
croprocessors, the 34010 has a 
dedicated interface port to allow 
another processor to gain access to 
its memory. The host interface is 
actually a communication channel 
into the 34010's memory space 
and can be used for other pur- 
poses. Accesses requested via this 
8- or 16-bit data interface are 
scheduled at higher priority than 
the 34010's CPU by the memory 
controller. The local memory can 
also be directly accessed by a con- 
ventional hold interface. 

Four internal memory-mapped 
registers are dedicated to the host. 
These registers are loaded from the 
8/16-bit host bus under the control 
of two function select pins (HFSO, 
HFS1). Two of the 16-bit registers 
combine to form a 32-bit address 
into local memory. Another regis- 
ter holds the data written to and 
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Interface 

Figure 5. TMS7042 as serial port host. 

read from memory, and the fourth contains control in- 
formation. 

In addition to the data transfer registers, the host 
processor has access to a 16-bit control word. Using 
this register, the host has complete control of the 
34010. The control register can be set up for automatic 
incrementing of the address register on reads and/or 
writes for block access throughput of five megabytes 
per second. 

The management of these resources and the memory 
pointer registers can be controlled by the 34010 or the 
host. In a 34010-controlled interface scheme, the host 
does not need to have any knowledge of the local 
memory organization. The 34010 is capable of loading 
the address registers locally, thus decoupling the host 
from the local memory implementation. The host in- 
terface’s control register provides the host access to 
dedicated message-passing bits, a register-controlled 
interrupt in and out, and a nonmaskable interrupt. The 
control register also supports halting of the 34010’s 
CPU and flushing of the contents cache, particularly 
useful when downloading code. The halt control can 
also be very useful in capturing the full bandwidth of 
the local bus for time-critical data transfers. 

Using the host interface for  other functions. 
Although intended to be a port for a host processor’s 
commands and data, the host interface provides an 
economical way to access the local memory for any 
purpose. One system, for example, uses an 8-bit 
microcomputer as a front-end serial controller. The 
microcomputer, operating as a serial port or network 
interface, attaches very easily to the 34010. Figure 5 
shows the connection of the 8-bit TMS7042 microcom- 
puter with serial port to the processor host port. 

The host has access to the interrupt vector table via 
the host interface. Thus, the host or other local pro- 
cessor can dynamically install interrupt vectors and 
their associated interrupt routines. The external pro- 
cessor can then initiate interrupts via either the 34010’s 
interrupt pins or the host control register. For external- 
ly generated interrupts, there are both maskable and 
nonmaskable interrupts in addition to Reset. Two ex- 
ternal pins, LINT1 and LINT2, are dedicated external 
interrupt inputs. Two bits in the host control register 
control the operation of the nonmaskable interrupt. 
One bit invokes the interrupt itself while the other 
enables or disables the stacking of the program counter 
and status during the interrupt routine. Preventing the 
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stacking process in the interrupt routine is sometimes 
necessary to gain immediate control of a system in 
which the stack pointer value may have been corrupted. 

The host interface can also be used as an indepen- 
dent debug/test channel into the local memory space. 
Debugging programs can use this port to access state 
variables supplied by a local monitor program giving 
information about the processor’s internal machine 
state. Similarly, the port can be used for communi- 
cating system state variables at the end of prescribed 
system tests at bootup. These can be either controlled 
locally by the 34010 or command-driven over the host 
port. 

Display controller. Although designed for CRT con- 
trol, the display controller is a very flexible counter that 
can be used for a wide range of timing or event- 
counting functions. Functionally, it has two cascaded 
16-bit counters (for a total of 32 bits of dynamic range) 
with four programmable comparators on each counter. 
The comparators are used to generate three output 
signals (nominally used as vertical sync, horizontal 
sync, and blanking). A programmable interrupt can be 
set on the basis of any vertical count. 

The input clock for the counter can run from 0 (stop- 
ped) to 7.5 MHz and can be totally asynchronous with 
the processor clock. The counters support an external 
video mode, which allows external events to reset the 
vertical and horizontal counters independently. 

Internal clocks. The clock timing logic converts the 
input clock frequency into the various internal timing 
clocks needed to operate the processor. In addition, it 
generates the local bus clock signals used by external 
devices to operate synchronously with the processor’s 
local bus. Current devices operate with a divide-by- 
eight from the input clock to generate 130-11s cycle 
times for a 60-MHz input clock. 

Model of operation. The large register file, instruc- 
tion cache, and independent memory controller are 
designed to work together for high performance. The 
processor’s model of operation is that instructions con- 
trolling the algorithm are automatically loaded into the 
cache, data is stored in the large register file, and the 
memory controller and its bandwidth into the off-chip 
memory are used only in manipulating external data. 
Other system operations such as host accesses are re- 
quested and scheduled by the memory controller as a 
background task, and interrupts are used for commu- 
nications, handshaking, and error conditions. 

Feature set and definition decisions 
In designing a processor, one must evaluate package 

size, pin count, target memory type, and a wide variety 
of features that can be incorporated. The 34010 was 

designed to bring the high performance and ease of 
programming associated with 32-bit microprocessors 
to low-cost systems. Contrary to common belief, the 
difficult part of product definition is not identifying 
good features to add (which are infinite) but making 
the tough choices between what can be included and 
what must be left out for cost reasons. 

To achieve the best system cost-performance ratio, 
the feature set and functions of a processor must be 
balanced. Balanced means that the features comple- 
ment each other in a practical way. For example, the 
34010 was targeted at low-cost memory systems. Fea- 
tures such as the on-chip instruction cache and large 
register file provide faster execution by reducing the 
need for access to the DRAM, while direct DRAM con- 
trol and multiplexed addressing reduce system cost and 
complexity. 

Large linear address space with bit-field processing. 
Graphics display systems need large amounts of 
memory, leading to several basic design decisions. A 
clean architecture to support a large linear address 
reach is needed, and this in turn requires a 32-bit inter- 
nal data path to manipulate the large addresses quickly. 

Unique among microprocessors, the 32-bit address 
of the 34010 points to the exact bit location in memory 
rather than to the byte, word, or long-word of other 
processors. The whole of memory is viewed as a series 
of bits ordered from 0 to 232-1. All the memory ad- 
dressing modes directly support bit-field processing. 
Field lengths from 1 to 32 bits are directly supported in 
all general-purpose move operations. The autodecre- 
ment and autoincrement addressing modes also use the 
field size to adjust address registers. In addition, any 
size array of fields can be moved with the PIXBLT in- 
struction (pixel block transfer). 

The byte, word, and long-word are artifacts of older 
processor architectures in which there was only one 
basic data size-the byte. In processors with limited 
address bits, byte addressing served as a good com- 
promise between data granularity and address reach. 
Also, earlier architectures did not have the hardware, 
such as barrel shifters and masklmerge multiplexers, 
to quickly handle problems bit-aligned addressing can 
create. But the 34010’s architecture started with a 
32-bit address reach, and its hardware manipulates bit 
fields with equal ease as bytes or words, so there was no 
need to impose a distinction. 

Bit-field processing is directly supported by special 
hardware on the device. This extends the bit control 
and manipulation facilities found in controller sys- 
tems, adding memory bit manipulations to those avail- 
able in registers. Processors without this facility must 
perform many operations to achieve the same effect. 
To transfer a nonaligned byte field from one memory 
location to another, the typical processor must read the 
source word into a register, mask out uninvolved bits, 
align the source word with the destination location, 
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Contrary to common belief, 
the difficult part of product 

definition is not identifying good 
features to add. 

read in the destination word, mask out the affected 
field (byte), logically merge the source and destination 
words, and then write the result to the destination. The 
34010 CPU can direct this operation within a single in- 
struction and then continue to execute operations 
within its register file while the destination memory ac- 
cesses are being performed. 

Large register file. The decision to go to thirty-one 
32-bit registers rather than the 16 or fewer found on 
most machines was driven by the desire to make time- 
critical functions run faster and to ease assembly-level 
programming. Register-to-register operations occur in 
a single cycle when running out of cache and can occur 
in parallel with the memory controller’s completion of 
previously started write cycles. This parallelism 
naturally occurs in routines in which the CPU is com- 
puting functions written to a series of memory loca- 
tions. The example used as a model during the 34010’s 
definition was an ellipse-drawing routine, in which the 
address computations and data values are held in the 
register file and the pixels to be written are sent to the 
memory controller. A large register file means that all 
the parameters for most time-critical functions can be 
kept inside the processor, thus preventing the thrashing 
of parameters between the register file and memory. By 
preventing thrashing, the register file frees the memory 
bandwidth for other functions such as memory write 
cycles, host accesses, and DRAM refresh. In many pro- 
grams the large register file can be the single most im- 
portant feature for improving performance. 

There are several ways to take advantage of the 
larger register file. It is helpful to the compiler to have 
several working registers for storing intermediate 
results of computations such as evaluating expression 
trees. Intelligent compilers (made popular by RISC ar- 
chitectures) can take even greater advantage of more 
registers by tracking the contents of registers and per- 
forming efficient constant generation. This also means 
that the programmer trying to optimize his or her own 
code in high-level language will not compete with the 
compiler for access to a small number of register vari- 
ables to hold critical values. 

Important, time-critical routines are usually written 
in assembly code to optimize performance. It is in 
writing such routines that the benefit of the large regis- 
ter file is most obvious. If there are too few registers, 
most of a programmer’s algorithmic effort can be ex- 
pended on register management. With 31 registers, a 

large number of critical values can be kept in the regis- 
ter file during execution. This is sufficient for most 
control algorithms and has a direct impact on the ease 
of design of the algorithm implementation. In addi- 
tion, the processor’s efficient register-stacking and 
-unstacking instructions make register allocation and 
management trivial. 

The 34010’s initial target applications area clearly in- 
dicated that a large number of 32-bit registers were very 
desirable. Many graphics algorithms require a large 
number of data variables and address pointers. With- 
out the target application to measure against, it would 
have been much easier to define an architecture with 
fewer registers. 

The on-board registers are organized as two 15-regis- 
ter files named the A and B files. The distinction be- 
tween the files is that instructions requiring two regis- 
ters must have both registers in the same file. The move 
register to register instruction is an exception to this 
rule so that data can be moved between register files. 
The other exception is the stack pointer that is accessi- 
ble as the 16th register of either file. 

The memory move, arithmetic, Boolean, shift, and 
other register-based instructions and addressing modes 
can use any of the 31 registers. This is particularly im- 
portant in optimizing languages such as C, where any 
operation that can be performed on data can be done 
on address pointers. Therefore, data/address place- 
ment is not constrained, giving the compiler great 
latitude in organizing register usage. 

An important part of the processing task for embed- 
ded-control applications is the processor’s interrupt 
support. An added benefit of the large register file is 
the ability to dedicate registers to time-critical func- 
tions such as interrupt routines. Embedded applica- 
tions often have parameters that must be dealt with 
quickly when an interrupt occurs. Dedicating part of 
the register file to these values can save considerable 
time swapping data in and out. 

Instruction cache. The four-way set associative ap- 
proach was designed to support two loops, each strad- 
dling set boundaries without thrashing. During the 
34010’s early definition, relatively little time was spent 
defining the cache compared with time spent justifying 
its hypothetical performance on pathological cases, 
cache architecture being part philosophy and part 
science. 

Since graphics was the focus of the 34010, circle, 
line, and ellipse algorithms were used as model test 
cases for the cache. The nature of these algorithms is 
that they have a single loop, but a decision based on in- 
cremental calculations is made between two sets of 
code on each loop. The goal was to have these algo- 
rithms fit in the cache without thrashing and without 
requiring the programmer to worry about the position 
of code in memory. The four-way set associative 
method worked well on the graphics test cases. 
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Figure 6. TMS34010 DRAM system. 

Unlike general data caches, relatively small instruc- 
tion caches can have very good hit rates. This is due to 
the locality of programs and the fact that many time- 
critical functions are done in small loops. Additionally, 
instruction caches are less expensive than general data 
caches since they do not have to deal with data writing 
back to main memory (unless self-modifying code is 
allowed). 

Making DRAM accessible to low-chip-count sys- 
tems. A key difference between the 34010 and other 
microprocessors is its direct interface to DRAM. This 
interface changes the point at which DRAM becomes 
cost effective in a system. 

Figure 6 shows the minimum number of devices re- 
quired to implement an embedded system in a low-cost 
PC platform. A PAL (programmable array logic) and 
an octal transceiver provide the host processor access 
to the 34010’s five-chip, 128K-byte DRAM system. 
The host processor provides nonvolatile program store 
and bootstrap capability for the system. This provides 
two benefits. First, the host has random access into the 
processor’s memory space for communications, elim- 
inating the need for a separate I/O channel. Second, 
the operating software of the embedded processor can 
be updated or entirely changed remotely from the host 
system. This eliminates the need for exchanging parts 
or otherwise “touching” the embedded system hard- 
ware in order to perform field upgrades. 

Although DRAMs are the most cost-effective mem- 
ory device per bit, they have not generally been used in 
low-cost, low-chip-count systems. DRAM devices re- 
quire complex timing and address multiplexing, which, 
if not built into the microprocessor, require external 
control. Because of this overhead, applications need- 
ing relatively few memory chips have not previously 
used DRAM. 

The capacity of DRAM chips allows the designer 
fairly large amounts of memory in very few chips. 
With 256K-bit DRAMs organized as 64K deep by 4 bits 
wide per chip, only four chips give a 16-bit data width 
and 128K bytes of memory. With 256K by 4 (one 
megabit) DRAM devices, four chips result in 512K 
bytes. Thus, a relatively small number of DRAM 
devices can provide all the RAM required for most 
embedded applications. 

Having the DRAM interface built into the processor 
can provide performance benefits in systems using 
these lower cost memories. Typically, considerable 
time is lost in interfacing a microprocessor to the 
DRAM because of the inherent losses in going through 
another controller chip and because of timing mis- 
matches between the microprocessor’s signals and the 
DRAM. The processor uses a high-frequency (40 MHz 
to 60 MHz) input clock so that it can precisely place the 
large number of timing edges required by a DRAM. 

Since DRAM is generally slower than other memory 
types, considerable attention was given to improving 
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performance in a DRAM-based system. While “big 
system” host models may use multitiered memory 
hierarchies with external instruction and data caches 
and very fast buses to achieve very high performance, 
these features come at a cost. The instruction cache and 
the large register file were designed to reduce accesses 
to the DRAM. 

I I I I I I  
o l o l o l o  Owode 

Packaging for low cost. The processor requires only 
68 pins and power dissipation of about one-half watt, 
allowing it to use a very low cost plastic package. 
Packaging dominates the cost of making most high- 
volume components, so fitting a low-cost package was 
an important design consideration. One key to keeping 
the pin count small lay in the DRAM timing. Time 
multiplexing the row address, column address, and 
data on the same pins fit the DRAM timing require- 
ments well and saved a number of pins. 

While the 34010 has a 32-bit internal data path, the 
external data path is 16 bits to reduce overall system 
cost. This design decision kept the pin count down and 
eliminated the overhead associated with a wider data 
bus. As part of the original strategy, wider data bus 
versions of the device are under development. 

I l l  
File Reg. No. 

Opcode formats and design simplicity. The 34010 
follows the RISC philosophy of having very few fixed 
opcode formats and has a fixed-length 16-bit instruc- 
tion. As other researchers have indicated, a 32-bit op- 
code, as in most RISC machines, is not efficient in 
terms of the number of bits required by a function.6 
The same philosophy of architectural efficiency has 
resulted many times in inefficient instruction encoding. 
Opcodes (not including immediate data) on the 34010 
were kept to 16 bits in length to reduce instruction 
bandwidth requirements and to obtain better utiliza- 
tion of the instruction cache. 

Another objective was to make the instruction for- 
mats easy to decode. There are only four opcode for- 
mats: one-register, two-register, short-constant, and 
jump opcodes, as shown in Figure 7.  These four for- 
mats are organized into two groups for decoding pur- 
poses: single-register and everything else. For the one- 
register format a special nonbinary address decoder 
was used to avoid an extra level of decoding. Thus, one 
less level of instruction pipelining was required, 
resulting in simpler logic and faster jumps and branch 
execution. For the other formats, the upper 8 bits (bits 
0 to 15) of the opcode specify the instruction. Redun- 
dant states in the microcode preclude the need for 
detailed decoding beyond the upper 8 bits. 

The two-register-file organization was devised to 
provide a large register file and at the same time to 
maintain a compact, easy-to-decode, 16-bit instruction 
word. This organization requires only 9 bits (since the 
register file select bit is shared) as opposed to 10 bits to 
specify two of 31 different registers, but it also limits 
operations between files. Other approaches were con- 

010 0 ’ 1  I 0 0’ 1 0 Opcode Short Constant File 
I I I I  I l l  

Dest Reg. 

One And No Register Format 
1 5 1 4 1 3  1211 10 Cl 8 7 6 5 4 3 2 1 0  

I l l  I l l  I bp!cot!le ’ I Source Reg. I File I Dest Reg. I 

Conditional Jump Format 

Figure 7. TMS34010 opcode formats. 

sidered, such as split addreddata  files as was done on 
the 68000.7 But that organization might have restricted 
the operations that could be done on addresses, limited 
the flexibility of register usage for address or data, and 
made instruction decoding more complicated. 

RISC. What discussion of microprocessor architec- 
ture decisions would be complete today without com- 
menting on RISCs, a much overused and abused term?* 
The 34010 design, influenced by the Berkeley RISC 
philosophy, has an RISC base instruction set to which 
were added special graphics instructions. Independent 
of the RISC influence, our experience designing the 
9900 family of microprocessors had demonstrated that 
decoding complex instructions wastes hardware and 
performance. 

Statistical data on general applications running on 
our 990 minicomputers agreed with other studies in- 
dicating that move, jump, increment, decrement, and 
add operations dominate the mix of instructions exe- 
cuted.9.lo In contrast, embedded applications can stress 
a specific function and thus may have instruction mixes 
that look very dissimilar to the general-purpose cases. 

The 34010 supports variable bit-field sizes, not 
found in many RISCs, but it does adopt the Berkeley 
RISC concept of sign or zero extending to 32 bits for 
smaller data types when moving them into a register.]] 
Like the Berkeley RISC, it performs 32-bit register-to- 
register arithmetic. 

Although it does not use the Berkeley register win- 
dow concept, the 34010 does offer a larger register file 
than most 32-bit microprocessors. Some consideration 
was given to the register window concept since it is 
similar to the older workspace pointer concept of the 
TMS9900 family, which used a pointer to its register 
file in external RAM. The 9995 microprocessor had 
256 bytes of internal memory, typically used to hold a 
large number of workspace “registers,” but this was 
still in slower RAM rather than faster, dual-ported reg- 
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ister file storage. The 34010’s designers decided that the 
very large windowed file of the Berkeley RISC would 
add too much to the chip’s size and would create speed 
paths that might limit fast operation. 

In keeping with the RISC philosophy, the 34010 exe- 
cutes most basic instructions in a single cycle. By using 
a single-level, very wide (]&-bit) control word, the 
processor can execute single-cycle instructions without 
extra pipelining. The opcodes were kept very simple 
and were constructed to act directly as addresses into 
the microcoded ROM. This eliminated the extra 
decode logic normally associated with microcoded mi- 
croprocessors. In effect, whereas a RISC machine uses 
a PLA for instruction decoding, a single-level ROM 
lookup is sufficient on the 34010. 

Departing from the strict RISC philosophy, the 
designers recognized that applications would benefit 
greatly from more sophisticated instructions that do 
not fit the single-cycle model of pure RISC machines. 
The complex PIXBLT instructions can be pipelined 
much more efficiently as single instructions than if 
broken into multiple single-cycle instructions. With in- 
ternal microcoding, the address manipulations, field 
extractions, merging, and multiple memory cycles can 
be more efficiently coordinated. The wide control sup- 
ports many parallel operations for faster execution. 

Real-time software development. The importance of 
assembly and HLL support was the basis for TI’S deci- 
sion to support the 34010 family with source and object 
management tools for assembly and C. In addition, 
both real-time and software-only emulation tools pro- 
vide debugging capability for hardware and algorithm 
prototyping. Application libraries provide source code 
algorithms for specific design tasks such as CCITT (In- 
ternational Consultative Committee for Telegraphy 
and Telephony) Group 3/Group 4 compression and 
decompression, as well as for various graphics stan- 
dards from the Massachusetts Institute of Technology, 
the American National Standards Institute, Graphic 
Software Systems, Microsoft ,  and  others.12 
Embedded-processor applications also usually require 
real-time operating systems. These have been devel- 
oped specifically for embedded processing for the 
34010 and are available from external parties. 12.13 

Applications in embedded control 
The general-purpose processing power and low sys- 

tem cost of the 34010 make it useful for a wide number 
of applications. Because of its graphics hardware and 
instructions, it naturally found wider initial use in 
graphics and graphics-related applications, but over 
time more designers are finding its larger applicability. 
The bit-field processing is an important feature that 
makes it attractive in control and data compression 
applications. 

Graphics terminal and display systems. The 34010 
has been widely used in both graphics add-in boards 
and display terminals.12 The hardware support for 
video display terminals, DRAM, VRAM, and host in- 
terface greatly reduces the cost of these systems. The 
support for graphics drawing, X-Y addressing, pixel 
block transfers, and general-purpose processing pro- 
vides high performance and easier programming. 

The 34010 can also be used to offload nongraphic 
processing from the host to improve overall system 
performance. As a result, entire applications have been 
written to run directly on the embedded processor, using 
the host only for keyboard interface, disk drive, and 
other 1 /0  functions. 

Consumer electronics. Because it is both a powerful 
microprocessor and a graphics chip integrated in low- 
cost packaging, the 34010 has potential applications in 
new consumer graphics designs. To date, most video 
game systems have used a combination of an 8-bit mi- 
croprocessor and a video controller chip to support 
graphics functions such as sprites (two-dimensional 
X-Y positional characters). The microprocessor and 
the controller chip can be replaced by a single 34010. 
The processing power of the resultant system opens up 
whole new areas of education as well as entertainment. 
Electronic building blocks, home 3-D CAD, flight 
simulators, driving trainers, and 3-D adventure games 
are just a few of the possibilities. 

Image compression for facsimile and CD-ROM. 
Graphics and images require large amounts of data to 
be stored and/or transmitted, making data compres- 
sion essential both for performance and cost. The need 
to globally transmit images has resulted in the CCITT 
facsimile standards for data compression. 14.15 Inexpen- 
sive stand-alone systems can be constructed incor- 
porating CCITT Group 3,  a 9600-bps modem, and 
paper-handling control. The acceptance of CCITT 
Group 3 compression has led to its wider use in other 
applications. A laser printer with the addition of a 
9600-bps modem can double as a facsimile printer. The 
CCITT standard is also being used as a compression 
method in applications such as CD-ROM (compact 
disks) and scanners. 

Fax-modem PC add-in boards provide facsimile 
transmission directly from a PC. They have a con- 
siderable quality advantage over printing out the image 
and then having it scanned by a stand-alone fax 
machine because they eliminate the distortion in- 
troduced during the scanning process. Since CCITT 
encoding is a generally accepted standard, it is also a 
convenient way to communicate images between 
machines without an intermediate step to paper. 

The CCITT Group 3 and Group 4 standards are 
based on bit manipulations and variable field length 
encoding. This bit-field processing is applied to edge 
detection, run length encoding, and data movement. A 
graphics processor has the added benefit of being able 
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Figure 8. Laser printer system. 

to generate, display, and manipulate the resulting im- 
ages. In the fax-modem application, although most PC 
displays cannot display the high-resolution fax image, 
the image can be translated into a gray-scale image that 
can be displayed for preview. 

Data compression techniques are being applied to in- 
crease the storage capabilities of such high-density 
media as CD-ROMs and other optical laser disks. As 
the storage requirements for these media increase, a 
higher degree of processing capability is required of the 
embedded controller to compress and decompress the 
data. 

The CCITT standard is primarily focused on black- 
and-white document transmission and is not ideal for 
every application. There are denser compression 
methods, particularly for handling color and gray- 
scale images. Because of the 34010’s programmability, 
it can be adapted to handle many of these unique com- 
pression methods. 

Page printers. Laser and other printing technology, 
such as thermal dye transfer (used in many color 
printers), is an obvious application for an embedded 
microprocessor with special graphics capabilities. 
Figure 8 shows a 34010-based laser printer system. In 
additicn to generating the print image, the processor 
can perform other functions such as controlling the 
print engine and the page feeder. 

Page printers require the ability to move and mani- 
pulate (to the bit level) large bitmaps of data, calculate 
outline fonts, and emulate dot matrix printers. Many 

printers also support page description languages such 
as Postscript or compatible products. For economy the 
printers typically have used 16-bit microprocessors, but 
these processors can often be the limiting factor in 
print speed, particularly when a page description lan- 
guage is used. Even for black-and-white laser printers, 
the amount of memory required is large due to the 
relatively high-resolution (typically over 2500 by 3300 
dots or one megabit) images they generate. This has led 
to the almost exclusive use of dynamic memory for the 
image buffer. 

For 6- to 10-page-per-minute laser printers, the 
34010 works alone. The on-chip DRAM controller 
reduces the external logic requirement, and the host in- 
terface is used as a general communication port. For 
performance of 15 to 60 ppm with page description re- 
quirements, multiprocessor configurations can be ap- 
plied to improve throughput. The embedded system’s 
master processor can be either a 16- or 32-bit micropro- 
cessor. The master processor handles the page descrip- 
tion language interpretation and then passes the 
graphics processing to the slave processors. The 
graphics processing performance of the 34010 and the 
resulting low system cost makes this multiprocessor 
configuration feasible. 

Additional embedded application areas for the 
34010 include laboratory and factory data acquisition, 
optical character recognition, dashboard and cockpit 
instrumentation, cardiac monitors, radar control sys- 
tems, process control, robotics, and medical imaging 
systems. 
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he 34010 is the first of a family of 32-bit embed- 
ded processors blending performance and system T integration to  support the growth of advanced 

applications. New family members currently in design 
will extend the design philosophy of this processor and 
improve the performance of the next generation of 
embedded systems. % 
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